Vibration Simulation Using

MATLAB
" ANSYS

sorted reduced system

ed = a_sort(l:num_states_used, l:num |_states_used);

ort(l:num_states_used)

CHAEL R HATCH

Mechanical Engineering/Applied Mathematics

Vibration Simulation Using

MATLAB
nd ANSYS

MICHAEL R. HATCH

Transfer function form, zpk, state space, modal, and state space modal
forms. For someone learning dynamics for the first time or for engineers
who use the tools infrequently, the options available for constructing
and representing dynamic mechanical models can be daunting. It is
important to find a way to put them all in perspective and have them
available for quick reference.

It is also important to have a strong understanding of modal analysis,
from which the total response of a system can be constructed. Finally,
it helps to know how to take the results of large dynamic finite element
models and build small MATLAE® state space models.

Vibration Simulation Using MaTrLAB and ANSYS answers all those
needs. Using a three degree of freedom (DOF) system as a unifying
theme, it presents all the methods in one book. Each chapter provides
the background theory to support its example, and each chapter contains
both a closed form solution to the problem—shown in its entirety—and
detailed MatLAB code for solving the problem.

Bridging the gap between /introductory vibration courses and the
techniques used in actual practice, Vibration Simulation Using MarLAB
and ANSYS builds the foundation that allows you to simulate your own
real-life problems.

FEATURES

e« Demonstrates how to solve real problems, covering the vibration of
systems from single DOF to finite element models with thousands
of DOF

e TIllustrates the differences and similarities between different models
by tracking a single example throughout the book

¢ Includes the complete, closed form solution and the MATLAB code
used to solve each problem
* Shows explicitly how to take the C2050
results of a realistic ANSYS finite ISBN L-5R4AR-205-0
90000

element model and develop a small
MATLAB state space model

* Provides a solid grounding in how
individual modes of vibration combine
for overall system response olPa 158882053

Vibration Simulation Using

MATLAB
nd ANSYS

MICHAEL R. HATCH
\

CHAPMAN & HALL/CRC

Boca Raton London New York Washington, D.C.

k]

Library of Congress Cataloging-in-Publication Data

Hatch, Michael R.
Vibration simulation using MATLAB and ANSYS / Michae! R. Hatch.
p. cm.
Includes bibliographical references and index.
ISBN 1-58488-205-0 (alk. paper)
1. Vibration--Computer simulation. 2. MATLAB. 3. ANSYS (Computer system) L.
Title.

TI177 .H38 2000
620.3°0113--dc21 00-055517
CIP

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are

used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2001 by Chapman & Hall/lCRC

No claim to original U.S. Government works &
International Standard Book Number 1-58488-205-0
Library of Congress Card Number 00-055517
Printed in the United States of America 2 3 4 56 78 90
Printed on acid-free paper

PREFACE

Background

This book resulted from using, documenting and teaching various analysis
techniques during a 30-year mechanical engineering career in the disk drive
industry. Disk drives use high performance servo systems to control actuator
position. Both experimental and analytical techniques are used to understand
the dynamic characteristics of the systems being controlled. Constant in-
depth communications between mechanical and control engineers are required
to bring high performance electro-mechanical systems to market. Having
mechanical engineers who can discuss dynamic characteristics of mechanical
systems with servo engineers is very valuable in bringing these high-
performance systems into production. This book should be useful to both the
mechanical and control communities in enhancing their communication.

Purpose of the Book

The book has three main purposes. The first purpose is to collect in one
document various methods of constructing and representing dynamic
mechanical models. For someone learning dynamics for the first time or for
an experienced engineer who uses the tools infrequently, the options available
for modeling can be daunting: transfer function form, zpk form, state space
form, modal form, state space modal form, etc. Seeing all the methods in one
book, with background theory, an example problem and accompanying
MATLAB ® (MathWorks, Inc., Natick, MA) code listing for each method,
will help put them in perspective and make them readily available for quick
reference. (Also, having equation listings with their accompanying MATLAB
code is a good way to develop or reinforce MATLAB programming skills.)

The second purpose is to help the reader develop a strong understanding of
modal analysis, where the total response of a system can be constructed by
combinations of the individual modes of vibration.

The third purpose is to show how to take the results of large dynamic finite
element models and build small MATLAB state space dynamic mechanical
models for use in mechanical or servo/mechanical system models.

Audience / Prerequisites

This book is meant to be used as a reference book in senior and early
graduate-level vibration and servo courses as well as for practicing servo and
‘mechanical engineers. It should be especially useful for engineers who have
limited experience with state space. It assumes the reader has a background in
basic vibration theory and elementary Laplace transforms.

For those with a strong linear systems background, the first 12 chapters will
provide little new information. Chapters 13 and 14, the finite element
chapters, may prove interesting for those with little familiarity with finite
elements. Chapters 15 to 19 cover methods for creating state space MATLAB
models from ANSYS finite element results, then reducing the models.

Programs Used

It is assumed that the reader has access to MATLAB and the Control System
Toolbox and is familiar with their basic use. The MATLAB block diagram
graphical modeling tool Simulink is used for several examples through the
book but is not required. Several excellent texts covering the basics of
MATLAB wusage can be found on the MathWorks Web page,
www.mathworks.com. All the programs were developed using MATLAB
Version 5.3.1.

Lumped mass and cantilever examples using the ANSYS® (ANSYS, Inc.,
Canonsburg, PA) finite element program are used throughout the text. Where
ANSYS results are required for input into MATLAB models, .they are
available by download without having to run the ANSYS code. For those
with access to ANSYS, input code is available by download. The last three
chapters contain complete ANSYS/MATLAB dynamic analyses of SISO
(Single Input Single Output) and MIMO (Multiple Input Multiple Output)
disk drive actuator/suspension systems. Revisions 5.5 and 5.6 of ANSYS
were used for the examples.

Organization

The unifying theme throughout most of the book is a three degree of
freedom (tdof) system, simple enough to be solved for all of its dynamic
characteristics in closed form, but complex enough to be able to visualize
mode shapes and to have interesting dynamics.

Chapters 1 to 16 contain background theoretical material, closed form
solutions to the example problem and MATLAB and/or ANSYS code for
solving the problems. All closed form solutions are shown in their entirety.

Chapters 17 to 19 analyze complete disk drive actuator/suspension systems
using ANSYS and MATLAB. All chapters list and discuss the related
MATLAB code, and all but the last three chapters list the related ANSYS
code. All the MATLAB and ANSYS input codes, as well as selected output
results, are available for downloading from both the MathWorks FTP site and
the author’s FTP site, both listed at the end of the preface. Reviewers have
provided different inputs on the amount and location of MATLAB and
ANSYS code in the book. Engineers for whom the material is new have

requested that the code be broken up, interspersed with the text and explained,
section by section. Others for whom MATLAB code is second nature have
suggested either removing the code listings altogether or providing them at the
end of the chapters or in an appendix. My apologies to the latter, but I have
chosen to intersperse code in the associated text for the new user.

A problem: set accompanies the early chapters. A two degree of freedom
system, very amenable to hand calculations, is used in the problem sets to
allow one to follow through the derivations and codes with less work than the
three degree of freedom (tdof) system used in the text. Some of the problems
involve modifying the supplied tdof MATLAB code to simulate the two
degree of freedom problem, allowing one to become familiar with MATLAB
coding techniques and usage.

Following an introductory chapter, Chapter 2 starts with transfer function
analysis. A systematic method for creating mass and stiffness matrices is
introduced. Laplace transforms and the transfer function matrix are then
discussed. The characteristic equation, poles and zeros are defined.

Chapter 3 develops an intuitive method of sketching frequency responses by
hand, and the significance of the magnitudes and phases of various frequency
ranges are discussed. Following a development of the imaginary plane and
plotting of poles and zeros for the various transfer functions, the relationship
between the transfer function and poles and zeros is discussed. Finally, mode
shapes are defined, calculated and plotted.

Chapter 4 discusses the origin and interpretation of zeros in Single Input and
Single Output (SISO) mechanical systems. Various transfer functions are
taken for a lumped parameter system to show the origin of the zeros and how
they vary depending on where the force is applied and where the output is
taken. An ANSYS finite element model of a tip-loaded cantilever is analyzed
and the results are converted into a MATLAB modal state space model to
show an overlay of the poles of the “constrained” system and their
relationship with the zeros of the original model.

Chapter 5, the state space chapter, takes the basic tdof model and uses it to
develop the concept of state space representation of equations of motion. A
detailed discussion of complex modes of vibration is then presented, including
the use of Argand diagrams and individual mode transient responses.

Chapter 6 uses the state space formulation of Chapter 5 to solve for frequency
responses and time domain responses. The matrix exponential is introduced
both as an inverse Laplace transform and as a power series solution for a
single degree of freedom (sdof) mass system. The tdof transient problem is

solved using both the MATLAB function ode45 and a MATLAB Simulink
model.

Chapter 7, the modal analysis chapter, begins with a definition of principal
modes of vibration, then develops the eigenvalue problem. The relationship
between the determinant of the coefficient matrix and the characteristic
equation is shown. Eigenvectors are calculated and interpreted, and the modal
matrix is defined. Next, the relationship between physical and principal
coordinate systems is developed and the concept of diagonalizing or
uncoupling the equations of motion is shown. Several methods of
normalization are developed and compared. The transformation of initial
conditions and forces from physical to principal coordinates is developed.
Once the solution in principal coordinates is available, the back
transformation to physical coordinates is shown. The chapter then goes on to
develop various types of damping typically used in simulation and discusses
damping requirements for the existence of principal modes. A two degree of
freedom model is used to illustrate the form of the damping matrix when
proportional damping is assumed, showing that the answer is not intuitive.

In Chapters 8 and 9 the tdof model is solved for both frequency responses and
transient responses in closed form and using MATLAB. A description of how
individual modes combine to create the overall frequency response is
provided, one of several discussions throughout the book which will help to
develop a strong mental image of the basics of the modal analysis method.

Chapter 10, the state space modal analysis chapter, shows how to solve the
normal mode eigenvalue problem in state space form, discussing the
interpretation of the resulting eigenvectors. Equations of motion are
developed in the principal coordinates system and again, individual mode
contributions to the overall frequency response are discussed. Real modes are
discussed in the same context as for complex modes, using Argand diagrams
and individual mode transient responses to illustrate.

Chapter 11 continues the modal state space form by solving for the frequency
response. Chapter 12 covers time domain response in modal state space form
using the MATLAB “ode45” command and “function” files. :

Chapters 13 and 14 discuss the basics of static and dynamic analysis using
finite elements, the generation of global stiffness and mass matrices from
element matrices, mass matrix forms, static condensation and Guyan
Reduction. The purpose of the finite element chapters is to familiarize the
reader with basic analysis methods used in finite elements. This familiarity
should allow a better understanding of how to interpret the results of the
models without necessarily becoming a finite element practitioner. A
cantilever beam is used as an example in both chapters. In Chapter 14 a

complete eigenvalue analysis with Guyan Reduction is carried out by hand for
a two-element beam. Then, MATLAB and ANSYS are used to solve the
eigenvalue problem with arbitrary cantilever models.

Chapters 15 and 16 use eigenvalue results from ANSYS beam models to
develop state space MATLAB models for frequency and time domain
analyses. Both chapters discuss simple methods for reducing the size of
ANSYS finite element results to generate small, efficient MATLAB state
space models which can be used to describe the dynamic mechanical portion
of a servo-mechanical model.

Chapter 17 uses an ANSYS model of a single stage SISO disk drive
actuator/suspension system to illustrate using dc or peak gains of individual
modes to rank modes for elimination when creating a low order state space
MATLAB model.

Chapter 18 introduces balanced reduction, another method of ranking modes
for elimination, and uses it to produce a reduced model of the SISO disk drive
actuator/suspension model from Chapter 17.

In Chapter 19 a complete ANSYS/MATLAB analysis of a two stage MIMO
actuator/suspension system is carried out, with balanced reduction used to
create a low order model.

Appendix 1 lists the names of all the MATLAB and ANSYS codes used in the
book, separated by chapter. It also contains instruction for downloading the
MATLAB and ANSYS files from the MathWorks FTP site as well as the
author’s Web site, www.hatchcon.com.

Appendix 2 contains a short introduction to Laplace transforms.
For MATLAB product information, contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 U.S.A.

Tel: 508-647-7000
Fax: 508-647-7101
E-mail: info@mathworks.com

Web: www.mathworks.com

For ANSYS product information, contact:

ANSYS, Inc.
Southpointe
275 Technology Drive

. Canonsburg, PA 15317

Tel: 724-746-3304
Fax: 724-514-9494

Web: www.ansys.com
Acknowledgments

There are many people whom I would like to thank for their assistance in the
creation of this book, some of whom contributed directly and some of whom
contributed indirectly.

First, I would like to acknowledge the influence of the late William Weaver,
Jr., Professor Emeritus, Civil Engineering Department, Stanford University. 1
first learned finite elements and modal analysis when taking Professor
Weaver’s courses in the early 1970s and his teachings have stood me in good
stead for the last 30 years.

Dr. Haithum Hindi kindly allowed the use of a portion of his unpublished
notes for the Laplace transform presentation in Appendix 2 and provided
valuable feedback on the nuances of “modred” and balanced reduction.

I would like to thank my reviewers for their thorough and time-consuming
reviews of the document: Stephen Birn, Marianne Crowder, Dr. Y.C. Fu,
Dr. Haithum Hindi, Dr. Michael Lu, Dr. Babu Rahman, Kathryn Tao and
Yimin Niu. Mark Rodamaker, an ANSYS distributor, kindly reviewed the
book from an ANSYS perspective. My daughter-in-law, Stephanie Hatch,
provided valuable editing input throughout the book.

I would also like to thank Dr. Wodek Gawronski for his words of
encouragement and his helpful suggestions to a new author. Dr. Gawronski’s
two advanced texts on the subject are highly recommended for those wishing
additional information (see References).

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 Representing Dynamic Mechanical Systems
1.2 Modal Analysis
1.3 Model Size Reduction

CHAPTER 2: TRANSFER FUNCTION ANALYSIS

2.1 Introduction
2.2 Deriving Matrix Equations of Motion
2.2.1 Three Degree of Freedom (tdof) System, Identifying
Components and Degrees of Freedom
2.2.2 Defining the Stiffness, Damping and Mass Matrices
223 Checks on Equations of Motion for Linear Mechanical
Systems
2.2.4 Six Degree of Freedom (6dof) Model — Stiffness Matrix
2.2.5 Rotary Actuator Model — Stiffness and Mass Matrices
23 Single Degree of Freedom (sdof) System Transfer Function
and Frequency Response
23.1 sdof System Definition, Equations of Motion
2.3.2 Transfer Function
233 Frequency Response
234 MATLAB Code sdofxfer.m Description
2.3.5 MATLAB Code sdofxfer.m Listing
2.4 tdof Laplace Transform, Transfer Functions, Characteristic
Equation, Poles, Zeros
2.4.1 Laplace Transforms with Zero Initial Conditions
24.2 Solving for Transfer Functions
243 Transfer Function Matrix for Undamped Model
2.4.4 Four Distinct Transfer Functions
245 Poles
24.6 Zeros
2477 Summarizing Poles and Zeros, Matrix Format
2.5 MATLAB Code tdofpz3x3.m — Plot Poles and Zeros
2.5.1 Code Description
252 Code Listing
2.5.3 Code Output — Pole/Zero Plots in Complex Plane
2.5.3.1 Undamped Model — Pole/Zero Plots
2.5.3.2 Damped Model — Pole/Zero Plots
2.5.3.3 Root Locus, tdofpz3x3_rlocus.m
2.5.34 Undamped and Damped Model — tf and zpk Forms
Problems

11
11
12

15
15
15
17
21
21

23
23
24
27
28
29
30
32
32
32
32
38
38
40
44
47
49

CHAPTER 3: FREQUENCY RESPONSE ANALYSIS

3.1 Introduction

32 Low and High Frequency Asymptotic Behavior

33 Hand Sketching Frequency Responses

34 Interpreting Frequency Response Graphically in Complex
Plane

3.5 MATLAB Code tdofxfer.m — Plot Frequency Responses

351
352
353
3.54
355
35.6

3.5.7

Code Description

Polynomial Form, For-Loop Calculation, Code Listing
Polynomial Form, Vector Calculation, Code Listing
Transfer Function Form —

Bode Calculation, Code Listing

Transfer Function Form, Bode Calculation with
Frequency, Code Listing

Zero/Pole/Gain Function Form, Bode Calculation with
Frequency, Code Listing

Code Output — Frequency Response Magnitude

and Phase Plots

3.6 Other Forms of Frequency Response Plots

3.6.1
3.6.2
3.63
364
3.6.5

3.6.6

3.7 Solving for Eigenvectors (Mode Shapes) Using the Transfer

Log Magnitude versus Log Frequency

db Magnitude versus Log Frequency

db Magnitude versus Linear Frequency
Linear Magnitude versus Linear Frequency
Real and Imaginary Magnitudes versus Log
and Linear Frequency

Real versus Imaginary (Nyquist)

Function Matrix

Problems

CHAPTER 4: ZEROS IN SISO MECHANICAL SYSTEMS

4.1 Introduction
42 “n” dof Example :
42.1 MATLAB Code ndof_numzeros.m,
Usage Instructions
422 Seven dof Model — z7/F1 Frequency Response
4.23 Seven dof Model — z3/F4 Frequency Response
4.24 Seven dof Model - z3/F3, Driving Point Frequency
Response
43 Cantilever Model - ANSYS
4.3.1 Introduction
43.2 ANSYS Code cantfem.inp Description and Listing

51

51
52
57

58
61
61
62
64

65

67

70

72
73
74
75
76
77

78
79

80
85

87

87
88

89
89
91

92
94
94
95

433 ANSYS Code cantzero.inp Description and Listing
43.4 ANSYS Results, cantzero.m
Problem

CHAPTER 5: STATE SPACE ANALYSIS

5.1 Introduction

52 State Space Formulation

53 Definition of State Space Equations of Motion

54 Input Matrix Forms

55 Output Matrix Forms

5.6 Complex Eigenvalues and Eigenvectors — State Space Form

5.7 MATLAB Code tdof_non_prop_damped.m:
Methodology, Model Setup, Eigenvalue Calculation Listing

58 Eigenvectors — Normalized to Unity

59 Eigenvectors — Magnitude and Phase Angle Representation

5.10 Complex Eigenvectors Combining to Give Real Motions

5.11 Argand Diagram Introduction

5.12 Calculating ¢, Plotting Eigenvalues in Complex Plane,

Frequency Response
5.13 Initial Condition Responses of Individual Modes
5.14 Plotting Initial Condition Response, Listing
5.15 Plotted Results: Argand and Initial Condition Responses
5.15.1 Argand Diagram, Mode 2
5.15.2 Time Domain Responses, Mode 2
5.153 Argand Diagram, Mode 3
5.15.4 Time Domain Responses, Mode 3
Problems

CHAPTER 6: STATE SPACE: FREQUENCY RESPONSE,

TIME DOMAIN
6.1 Introduction — Frequency Response
6.2 Solving for Transfer Functions in State Space Form Using
Laplace Transforms
6.3 Transfer Function Matrix

6.4 MATLAB Code tdofss.m — Frequency Response Using
State Space
6.4.1 Code Description, Plot
6.42 Code Listing

6.5 Introduction — Time Domain

6.6 Matrix Laplace Transform — with Initial Conditions
6.7 Inverse Matrix Laplace Transform, Matrix Exponential
6.8 Back-Transforming to Time Domain

6.9 Single Degree of Freedom System — Calculating Matrix

99
102
104

105

105
106
108
109
111
113

115
119
121
122
124

126
128
130
132
133
134
135
136
137

139
139

139
142

144
144
144
148
148
149
149

6.10

Exponential in Closed Form :
6.9.1 Equations of Motion, Laplace Transform
6.9.2 Defining the Matrix Exponential — Taking Inverse
Laplace Transform
6.9.3 Defining the Matrix Exponential — Using Series
Expansion
6.9.4 Solving for Time Domain Response
MATLAB Code tdof ss time ode45 sink.m —
Time Domain Response of tdof Model
6.10.1 Equation of Motion Review
6.10.2 Code Description
6.10.3 Code Results — Time Domain Responses
6.10.4 Code Listing
6.10.5 MATLAB Function tdofssfun.m —
Called by tdof ss_time_oded45_sink.m
6.10.6 Simulink Model tdofss_simulink.mdl

Problems

CHAPTER 7: MODAL ANALYSIS

7.1
7.2

73
7.4

7.5

7.6
7.7

7.8
7.9

7.10

Introduction
Eigenvalue Problem
7.2.1 Equations of Motion
7.2.2° Principal (Normal) Mode Definition
7.2.3 Eigenvalues/ Characteristic Equation
7.2.4 Eigenvectors
7.2.5 Interpreting Eigenvectors
7.2.6 Modal Matrix
Uncoupling the Equations of Motion
Normalizing Eigenvectors
7.4.1 Normalizing with Respect to Unity
7.4.2 Normalizing with Respect to Mass
Reviewing Equations of Motion in Principal Coordinates —
Mass Normalization
7.5.1 Equations of Motion in Physical Coordinate System
7.5.2 Equations of Motion in Principal Coordinate System
7.5.3 Expanding Matrix Equations of Motion in Both
Coordinate Systems
Transforming Initial Conditions and Forces
Summarizing Equations of Motion in Both Coordinate
Systems :
Back-Transforming from Principal to Physical Coordinates
Reducing the Model Size When Only Selected Degrees of
Freedom are Required
Damping in Systems with Principal Modes

150
150

151

152
152

153
153
155
156
157

159
160
161

163

163
164
164
165
165
168
172
172
173
177
177
178

182
182
183

183
184

185
186

187
189

7.10.1 Overview

7.10.2 Conditions Necessary for Existence of Principal Modes

in Damped System
7.10.3 Different Types of Damping
7.10.3.1 Simple Proportional Damping
7.10.3.2 Proportional to Stiffness Matrix —
“Relative” Damping
7.10.3.3 Proportional to Mass Matrix —
“Absolute” Damping
7.10.4 Defining Damping Matrix When Proportional
Damping is Assumed
© 7.10.4.1 Solving for Damping Values
7.10.4.2 Checking Rayleigh Form of Damping Matrix
Problems

CHAPTER 8: FREQUENCY RESPONSE: MODAL FORM

8.1 Introduction

82 Review from Previous Results

83 Transfer Functions — Laplace Transforms
in Principal Coordinates

8.4 Back-Transforming Mode Contributions to Transfer
Functions in Physical Coordinates

85 Partial Fraction Expansion and the Modal Form

8.6 Forcing Function Combinations to Excite Single Mode

8.7 How Modes Combine to Create Transfer Functions

8.8 Plotting Individual Mode Contributions

8.9 MATLAB Code tdof_medal_xfer.m — Plotting Frequency

Responses, Modal Contributions
8.9.1 Code Overview
8.9.2 Code Listing, Partial
8.10 tdof Eigenvalue Problem Using ANSYS
8.10.1 ANSYS Code threedof.inp Description
8.10.2 ANSYS Code Listing
8.10.3 ANSYS Results
Problems

CHAPTER 9 TRANSIENT RESPONSE: MODAL FORM

9.1 Introduction
9.2 Review of Previous Results
9.3 Transforming Initial Conditions and Forces

9.3.1 Transforming Initial Conditions
9.3.2 Transforming Forces
94 Complete Equations of Motion in Principal Coordinates

189

190
192
192

193

164

195
195
198
200

201

201
202

204

206
209
211
213
217

226
226
226
230
230
230
234
237

239

239
239
240
240
241
241

9.5 Solving Equations of Motion Using Laplace Transform
9.6 MATLAB Code tdof _modal_time.m — Time Domain
Displacements in Physical/Principal Coordinates
9.6.1 Code Description
9.6.2 Code Results
9.6.3 Code Listing
Problems

CHAPTER 10: MODAL ANALYSIS: STATE SPACE FORM

10.1 Introduction
10.2 Eigenvalue Problem
10.3 Eigenvalue Problem — Laplace Transform
10.4 Eigenvalue Problem — Eigenvectors
10.5 Modal Matrix
10.6 MATLAB Code tdofss_eig.m: Solving for Eigenvalues -
and Eigenvectors
10.6.1 Code Description
10.6.2 Eigenvalue Calculation
10.6.3 Eigenvector Calculation
10.6.4 MATLAB Eigenvectors — Real and Imaginary Values
10.6.5 Sorting Eigenvalues / Eigenvectors
10.6.6 Normalizing Eigenvectors
10.6.7 Writing Homogeneous Equations of Motion
10.6.7.1 Equations of Motion — Physical Coordinates
10.6.7.2 Equations of Motion — Principal Coordinates
10.6.8 Individual Mode Contributions,
Modal State Space Form
10.7 Real Modes — Argand Diagrams, Initial Condition
Responses of Individual Modes
10.7.1 Undamped Model, Eigenvectors, Real Modes
10.7.2 Principal Coordinate Eigenvalue Problem
10.7.3 Damping Calculation, Eigenvalue Complex Plane Plot
10.7.4 Principal Displacement Calculations
10.7.5 Transformation to Physical Coordinates
10.7.6 Plotting Results
10.7.7 Undamped/Proportionally Damped Argand Diagram,
Mode 2
10.7.8 Undamped/Proportionally Damped Argand Diagram,
Mode 3
10.7.9 Proportionally Damped Initial Condition Response,
Mode 2
10.7.10 Proportionally Damped Initial Condition Response,
Mode 3
Problems

243

247
247
248
251
254

255

255
256
257
259
262

262
262
262
264
265
266
269
273
273
274

277

279
280
283
284
286
287
288

290

292

293

295
298

CHAPTER 11: FREQUENCY RESPONSE:
MODAL STATE SPACE FORM

11.1 Introduction

11.2 Modal State Space Setup, tdofss_modal_xfer_modes.m
Listing

11.3 Frequency Response Calculation

11.4 Frequency Response Plotting

11.5 Code Results — Frequency Response Plots,
2% of Critical Damping

11.6 Forms of Frequency Response Plotting

Problem

CHAPTER 12: TIME DOMAIN: MODAL STATE SPACE
FORM

12.1 Introduction
12.2 Equations of Motion — Modal Form
12.3 Solving Equations of Motion Using Laplace Transforms
12.4 MATLAB Code tdofss_modal_time_ode45.m —
Time Domain Modal Contributions
12.4.1 Modal State Space Model Setup, Code Listing
12.4.2 Problem Setup, Initial Conditions, Code Listing
12.4.3 Solving Equations Using ode4S5, Code Listing
12.44 Plotting, Code Listing
12.4.5 Functions Called: tdofssmodalfun.m,
tdofssmodallfun.m, tdofssmodal2fun.m,
tdofssmodal3fun.m
12.5 Plotted Results
Problem

CHAPTER 13: FINITE ELEMENTS: STIFFNESS MATRICES

13.1 Introduction
13.2 Six dof Model — Element and Global Stiffness Matrices
13.2.1 Overview
13.2.2 Element Stiffness Matrix
13.2.3 Building Global Stiffness Matrix Using Element
Stiffness Matrices
13.3 Two-Element Cantilever Beam
13.3.1 Element Stiffness Matrix
13.3.2 Degree of Freedom Definition — Beam Stiffness Matrix
13.3.3 Building Global Stifftness Matrix Using Element
Stiffness Matrices

301
301

301
303
305

309
311
315

317

317
317
319

322
322
324
325
326

327
329
332

333

333
333
334
334

335
339
340
341

342

13.3.4 Eliminating Constraint Degrees of Freedom from
Stiffness Matrix
13.3.5 Static Solution: Force Applied at Tip
13.4 Static Condensation
13.4.1 Derivation

13.4.2 Solving Two-Element Cantilever Beam Static Problem

Problems
CHAPTER 14: FINITE ELEMENTS: DYNAMICS

14.1 Introduction
14.2 Six dof Global Mass Matrix
14.3 Cantilever Dynamics
14.3.1 Overview — Mass Matrix Forms
14.3.2 Lumped Mass
14.3.3 Consistent Mass
14.4 Dynamics of Two-Element Cantilever —
Consistent Mass Matrix
14.5 Guyan Reduction
14.5.1 Guyan Reduction Derivation
14.52 Two-Element Cantilever Eigenvalues Closed Form
Solution Using Guyan Reduction
14.6 Eigenvalues of Reduced Equations for Two-Element
Cantilever, State Space Form
14.7 MATLAB Code cant_2el_guyan.m —
Two-Element Cantilever Eigenvalues/Eigenvectors
14.7.1 Code Description
14.7.2 Code Results
14.8 MATLAB Code cantbeam_guyan.m —
User-Defined Cantilever Eigenvalues/Eigenvectors
149 ANSYS Code cantbeam.inp, Code Description
14.10 MATLAB cantbeam_guyan.m / ANSYS cantbeam.inp
Results Summary
14.10.1 10-Element Beam Frequency Comparison
14.10.2 20-Element Beam Mode Shape Plots, Modes 1 to 5
14.11 MATLAB Code cantbeam_guyan.m Listing
14.12 ANSYS Code cantbeam.inp Listing
Problems

CHAPTER 15: SISO STATE SPACE MATLAB MODEL
FROM ANSYS MODEL

15.1 Introduction
15.2 ANSYS Eigenvalue Extraction Methods

344
345
346
346
349
352

353

353
353
354
354
354
355

356
358
358

361

363

366
366
366

367
367

367
367
368
373
383
386

387

387
389

15.3

15.4

155
15.6

15.7

Cantilever Model, ANSYS Code cantbeam_ss.inp,
MATLAB Code cantbeam_ss_freq.m

ANSYS 10-Element Model Eigenvalue/Eigenvector
Summary

Modal Matrix

MATLAB State Space Model from ANSYS Eigenvalue
Run — cantbeam_ss_modred.m

15.6.1
15.6.2
15.6.3

15.6.4

15.6.5
15.6.6
15.6.7

15.6.8
15.6.9

15.6.10

15.6.11
15.6.12
15.6.13
15.6.14
15.6.15
15.6.16
15.6.17

15.6.18

15.6.19

Input

Defining Degrees of Freedom and Number of Modes
Sorting Modes by dc¢ Gain and Peak Gain,

Selecting Modes Used

Damping, Defining Reduced Frequencies and Modal
Matrices

Setting up System Matrix
Setting up Input Matrix “b”
Setting up Output Matrix “c”
Matrix “d”

Frequency Range, “ss” Setup, Bode Calculations

Full Model — Plotting Frequency Response,

Step Response

Reduced Models — Plotting Frequency Response

Step Response

Reduced Models — Plotted Results — Four Modes Used
Modred Description

Defining Sorted or Unsorted Modes to be Used
Defining System for Reduction

Modred Calculations — “mdc” and “del”

Reduced Modred Models — Plotting Commands
Plotting Unsorted Modred Reduced Results —
Eliminating High Frequency Modes

Plotting Sorted Modred Reduced Results —
Eliminating Lower d¢ Gain Modes

Modred Summary

€ ”

and Direct Transmission

ANSYS Code cantbeam_ss.inp Listing

CHAPTER 16: GROUND ACCELERATION MATLAB

16.1
16.2
16.3

16.4

MODEL FROM ANSYS MODEL

Introduction

Model Description

Initial ANSYS Model Comparison — Constrained-Tip and
Spring-Tip Frequencies/Mode Shapes

MATLAB State Space Model from ANSYS Eigenvalue
Run — cantbeam_ss_shkr_modred.m

389

391
393

394
395
396

396

402
403
405

407
409

410

413
416
417
420
421
423
424

427
429
430
431

435

435
435

436

440

16.4.1
16.4.2
16.4.3
16.4.4

16.4.5
16.4.6
16.4.7
16.4.8
16.4.9
16.4.10

16.4.11
16.4.12

16.4.13
16.4.14

16.4.15

16.4.16

Input

Shaker, Spring, Gram Force Definitions

Defining Degrees of Freedom and Number of Modes
Frequency Range, Sorting Modes by dc Gain and
Plotting, Selecting Modes Used

Damping, Defining Reduced Frequencies and Modal
Matrices

Setting Up System Matrix “a”

Setting Up Matrices “b,” “c” and *“d”

“ss” Setup, Bode Calculations

Full Model — Plotting Frequency Response,

Shock Response

Reduced Models — Plotting Frequency Response,
Shock Response

Reduced Models — Plotted Results, Four Modes Used
Modred — Setting up, “mdc” and “del” Reduction,
Bode Calculation

Reduced Modred Models — Plotting Commands
Plotting Unsorted Modred Reduced Results —
Eliminating High Frequency Modes

Plotting Sorted Modred Reduced Results —
Eliminating Lower dc Gain Modes

Model Reduction Summary

16.5 ANSYS Code cantbeam_ss_spring_shkr.inp Listing

CHAPTER 17: SISO DISK DRIVE ACTUATOR MODEL

17.1 Introduction

17.2 Actuator Description

17.3 ANSYS Suspension Model Description
17.4 ANSYS Suspension Model Results

174.1
17.42

Frequency Response
Mode Shape Plots

17.5 ANSYS Actuator/Suspension Model Description
17.6 ANSYS Actuator/Suspension Model Results

17.6.1
17.6.2
17.6.3
17.6.4

Eigenvalues, Frequency Responses
Mode Shape Plots

Mode Shape Discussion

ANSYS Output Example Listing

17.7 MATLAB Model, MATLAB Code act8.m Listing
and Results

17.7.1
17.7.2
17.7.3
17.74

Code Description

Input, dof Definition

Forcing Function Definition, dc Gain Calculation
Ranking Results

440

441

441

442

446
446
449
451

452

456
459

461
464

466

468
471
472

477

477
478
479
481
482
482
485
487
488

- 489

495
496

499
499
500
501
506

17.7.5 Building State Space Matrices
17.7.6 Define State Space Systems, Original and Reduced
17.7.7 Plotting of Results

17.8 Uniform and Non-Uniform Damping Comparison

17.9 Sample Rate and Aliasing Effects

17.10 Reduced Truncation and Matched dc Gain Results

CHAPTER 18: BALANCED REDUCTION

18.1 Introduction

18.2 Reviewing dc Gain Ranking, MATLAB Code balred.m

18.3 Controllability, Observability

18.4 Controllability, Observability Gramians

18.5 Ranking Using Controllability/Observability

18.6 Balanced Reduction

18.7 Balanced and dc Gain Ranking Frequency Response
Comparison

18.8 Balanced and dc Gain Ranking Impulse Response
Comparison

CHAPTER 19: MIMO TWO-STAGE ACTUATOR MODEL

19.1 Introduction
19.2 Actuator Description
19.3 ANSYS Model Description
19.4 ANSYS Piezo Actuator/Suspension Model Results
19.4.1 Eigenvalues, Frequency Response
19.4.2 Mode Shape Plots
19.43 Mode Shape Discussion
19.44 ANSYS Output Listing
19.5 MATLAB Model, MATLAB Code act8pz.m Listing
and Results
19.5.1 Input, dof Definition
19.5.2 Forcing Function Definition, dc Gain Calculations
19.5.3 Building State Space Matrices
19.5.4 Balancing, Reduction
19.5.5 Frequency Responses for Different Numbers of
Retained States
19.5.6 “del” and “mdc” Frequency Response Comparison
19.5.7 Impulse Response
19.6 MIMO Summary
Problems

APPENDIX 1: MATLAB and ANSYS Programs

509
513
515
518
521
522

527

527
528
530
535
541
542

546

552

561

561
562
563
565
565
567
574
575

578
578
580
592
596

607
614
616
623
624

625

APPENDIX 2: Laplace Transforms

A2.1
A22
A23
A24
A25

A2.6
A27
A28
A29

References
Index

Definitions

Examples, Laplace Transform Table
Duality

Differentiation and Integration

Applying Laplace Transforms to LODE’s
with Zero Initial Conditions

Transfer Function Definition

Frequency Response Definition
Applying Laplace Transforms to LODE’s
with Initial Conditions

Applying Laplace Transform to State Space

631
631
633
635
635

636

637
637

637
638

641
643

CHAPTER 1

INTRODUCTION

This book has three main purposes. The first purpose is to collect in one
document the various methods of conmstructing and representing dynamic
mechanical models. The second purpose is to help the reader develop a strong
understanding of the modal analysis technique, where the total response of a
system can be constructed by combinations of individual modes of vibration.
The third purpose is to show how to take the results of large finite element
models and reduce the size of the model (model reduction), extracting lower
order state space models for use in MATLAB.

1.1 Representing Dynamic Mechanical Systems

We will see that the nature of damping in the system will determine which
representation will be required. In lightly damped structures, where the
damping comes from losses at the joints and the material losses, we will be
able to use “modal analysis,” enabling us to restructure the problem in terms
of individual modes of vibration with a particular type of damping called
“proportional damping.” For systems which have significant damping, as in
systems with a specific “damper” element, we will have to use the original,
coupled differential equations for solution.

The left-hand block in Figure 1.1 represents a damped dynamic model with
coupled equations of motion, a set of initial conditions and a definition of the
forcing function to be applied. If damping in the system is significant, then
the equations of motion need to be solved in their original form. The option
of using the normal modes approach is not feasible. The three methods of
solving for time and frequency domain responses for highly damped, coupled
equations are shown.

1.2 Modal Analysis

Most practical problems require using the finite element method to define a
model. The finite element method can be formulated with specific damping
elements in addition to structural elements for highly damped systems, but its
most common use is to model lightly damped structures.

2 Vibration Simulation Using MATLAB and ANSYS

Coupled Equations of
Motion
Initial Conditions
Forces
(Chapter 2)

ro/Pole/Gain For Transfer Function State Space Form
Form

(Chapter 2) (Chapter 3) (Chapter 5)

Solution
Frequency Domain
Time Domain

Figure 1.1: Coupled equations of motion flowchart.

The diagram in Figure 1.2 shows the methodology for analyzing a lightly
damped structure using normal modes. As with the coupled equation solution
above, the solution starts with deriving the undamped equations of motion in
physical coordinates. The next step is solving the eigenvalue problem,
yielding eigenvalues (natural frequencies) and eigenvectors {mode shapes).
This is the most intuitive part of the problem and gives one considerable
insight into the dynamics of the structure by understanding the mode shapes
and natural frequencies.

Chapter 1 Introduction 3

Physical Coordi Modal Coordinates
Coupled Equations of mmmmuordin Uncoupled Equations of
Motion) Eigenvalues . I " - Motion
Initial Conditions Eigenvectors > v se.Elgenvalues/ > Initial Conditions
Eigenvectors
Forces (Chapter 7) (Chapter 7 Forces
(Chapter 2) pler 7) (Chapter 7)
Can skip previous two boxes
Y and go directly to State- |
Space or can carry out steps
Generate State-Space Form explicitly
by Inspection
Transform to Solution in
" Solution in Modal Physical Coordinates
- Coordinates ~=-g] Thine Domain
(Chapter 10) (Chapter 11, 12) Frequency Domain
(Chapter 10-12)
Can do In one step Trs, " 1 Dl?m
or can t.io in modal) TIme Domain
coordinates and .
transform Frequency Domain

(Chapter 10-12)

Figure 1.2: Modal analysis method flowchart.

To solve for frequency and time domain responses, it is necessary to
transform the model from the original physical coordinate system to a new
coordinate system, the modal or principal coordinate system, by operating on
the original equations with the eigenvector matrix. In the modal coordinate
system the original undamped coupled equations of motion are transformed to
the same number of undamped uncoupled equations. Each uncoupled
equation represents the motion of a particular mode of vibration of the system.
It is at this step that proportional damping is applied. It is trivial to solve
these uncoupled equations for the responses of the modes of vibration to the
forcing function and/or initial conditions because each equation is the
equation of motion of a simple single degree of freedom system. The desired
responses are then back-transformed into the physical coordinate system,
again using the eigenvector matrix for conversion, yielding the solution in
physical coordinates.

The modal analysis sequence of taking a complicated' system, (1) transforming
to a simpler coordinate system, (2) solving equations in that coordinate system
and then (3) back-transforming into the original coordinate system is

4 Vibration Simulation Using MATLAB and ANSYS

analogous to using Laplace transforms to solve differential equations. The
original differential equation is (1) transformed to the “s” domain by using a
Laplace transform, (2) the algebraic solution is then obtained and is (3) back-
transformed using an inverse Laplace transform.

It will be shown that once the eigenvalue problem has been solved, setting up
the zero initial condition state space form of the uncoupled equations of
motion in principal coordinates can be performed by inspection. The solution
and back-transformation to physical coordinates can be performed in one step
in the MATLAB solution.

The advantage of the modal solution is the insight developed from
understanding the modes of vibration and how each mode contributes to the
total solution.

1.3 Model Size Reduction

It is useful to be able to provide a model of the mechanical system to control
engineers using the fewest states possible, while still providing a
representative model. The mechanical model can then be inserted into the
complete mechanical/control system model and be used to define the system
dynamics.

Figure 1.3 shows how to convert a large finite element model (and most real
finite element models are “large,” with thousands to hundreds of thousands of
degrees of freedom) to a smaller model which still provides correct responses
for the forcing function input and desired output points.

The problem starts out with the finite element model which is solved for its
eigenvalues and eigenvectors (resonant frequencies and mode shapes). There
are as many eigenvalues and eigenvectors as degrees of freedom for the
model, typically too large to be used in a MATLAB model.

Once again, the eigenvalues and eigenvectors provide considerable insight
into the system dynamics, but the objective is to provide an efficient, “small”
model for inclusion into the mechanical/servo system model. This requires
reducing the size of the model while still maintaining the desired input/output
relationships.

Chapter 1 Introduction 5

Finite Element Model
10,000-1,000,000
Degrees of Freedom
(Chapter 14)

Guyan Reduction
"Reduced” Model with

<1000 Degrees of
Freedom
(Chapter 14)

Block Lanczos
+ "Full" Eigenvalue

Problem
{Chapter 15)

Reduced Eigenvalue
Problem
Eigenvalues/
Eigenvectors
(Chapter 14)

\

De; Fr m
Reduction
Include only dof where
forces applied and/or
outputs desired
(Chapters 7, 15-19)

Modal Reduction
Include only modes
which have significant
contribntion to desired
response
(Chapters 15-19)

Modal State Space Form
Equations of Moti

(Chapter 10)

Y

Solution in Physical
Coordinates
Frequency Domain
Time Domain
(Chapters 15-19)

Figure 1.3: Model size reduction flowchart.

The reduction of the size of the model is accomplished in two steps. The first
is to reduce the number of degrees of freedom of the model from the original

6 Vibration Simulation Using MATLAB and ANSYS

set to a new set which includes only those degrees of freedom where forces
are applied and/or where responses are desired.

The second step for Single Input Single Output (SISO) systems is to reduce
the number of modes of vibration used for the solution by ranking the relative
importance of each mode to the overall response. For Multi Input Multi
Output (MIMO) systems, a more sophisticated method of reduction which
simultaneously takes into account the controllability and observability of the
system is required.

Figure 1.4 shows the overall frequency response for a SISO cantilever beam
model discussed in Chapter 15. Superimposed over the overall frequency
response is the contribution of each of the individual 10 modes of vibration
which make up the overall response.

cantilever tip displacement for mid-length force, all 10 modes included

20 | T T

-205

-40

-80¢
-100]

Magnitude, db mm

-120

180 = - .
10 10 10 10* 10
Frequency, hz

Figure 1.4: Individual mede contribution to overall frequency response.

We will show that modes with little or no displacement at the reduced set of
degrees of freedom are candidates for elimination. For example, the three
modes which have low frequency magnitudes of less than —120db in Figure
1.4 have no effect on the overall frequency response — their peaks do not show
up on the overall frequency response. The less important modes either can be
eliminated directly or a more sophisticated method can be used which takes
into account the low frequency effects of the removed modes. Both types are
discussed in detail, accompanied by examples.

A reduced solution can provide very good results with a significant reduction
in number of states — a model which is very amenable to being combined with
a servo model for a complete servo mechanical system model.

CHAPTER 2

TRANSFER FUNCTION ANALYSIS

2.1 Introduction

The purpose of this chapter is to illustrate how to derive equations of motion
for Multi Degree of Freedom (mdof) systems and how to solve for their
transfer functions.

The chapter starts by developing equations of motion for a specific three
degree of freedom damped system (indicated throughout the book by the
acronym “tdef”’). A systematic method of creating “global” mass, damping
and stiffness matrices is borrowed from the stiffness method of matrix
structural analysis. The tdof model will be used for the various analysis
techniques through most of the book, providing a common thread that links the
pieces into a whole.

Two additional examples are used to illustrate the method for building matrix
equations of motion. The first is a lumped mass six degree of freedom (6dof)
system for which the stiffness matrix is developed. The second is a simplified
rotary actuator system from a disk drive, for which the complete undamped
equations of motion are developed.

Following the equations of motion sections, the chapter continues with a
review of the transfer function and frequency response analyses of a single
degree of freedom (sdof) damped example. After developing the closed form
solution of the equations, MATLAB code is used to calculate and plot
magnitude and phase versus frequency for a range of damping values.

The tdof model is then reintroduced and Laplace transforms are used to
develop its transfer functions. In order to facilitate hand calculations of poles
and zeros, damping is set to zero. The characteristic equation, poles and zeros
are then defined and calculated in closed form. MATLAB code is used to plot
the pole/zero locations for the nine transfer functions using MATLAB’s
“pzmap” command.

MATLAB is used to calculate and plot poles and zeros for values of damping
greater than zero and we will see that additional real values zeros start
appearing as damping is increased from zero. The significance of the real axis
zeros is discussed.

8 Vibration Simulation Using MATLAB and ANSYS

2.2 Deriving Matrix Equations of Motion

2.2.1 Three Degree of Freedom (tdof) System, Identifying Components
and Degrees of Freedom

Iy S

T(ﬂjﬁ{m

Figure 2.1: tdof system schematic.

The first step in analyzing a mechanical system is to sketch the system,
showing the degrees of freedom, the masses, stiffnesses and damping present,
and showing applied forces. The tdof system to be followed throughout the
book, shown in Figure 2.1, consists of three masses, numbered 1 to 3, two
springs between the masses and two dampers also between the masses. The
model is purposely not connected to ground to allow a “rigid body” degree of
freedom, meaning that at “low” frequencies the set of three masses can all
move in one direction or the other as a single rigid body, with no relative
motion between them.

The number of degrees of freedom (dof) for a model is the number of
geometrically independent coordinates required to specify the configuration
for the model. For consistency, the notation “z” will be used for degrees of
freedom, saving “x” and “y” for state space representations later in the book.
For the system shown in Flgure 2.1 where each mass can move only along the
z axis, a single degree of freedom for each mass is sufficient, hence the
degrees of freedom z,, z, and z, .

2.2.2 Defining the Stiffness, Damping and Mass Matrices

The equations of motion will be derived in matrix form using a method
derived from the stiffness method of structural analysis, as follows:

Stiffness Matrix: Apply a unit displacement to each dof, one at a
time. Constrain the dof’s not displaced and define the stiffness
dependent constraint force required for all dof’s to hold the system
in the constrained position.

Chapter 2 Transfer Function Analysis 9

The row elements of each column of the stiffness matrix are then
defined by the constraints associated with each dof that are required
to hold the system in the constrained position.

Damping Matrix: Apply a unit velocity to each dof, one at a time.
Constrain the dof’s not moving and define the velocity-dependent
constraint force required to keep the system in that state.

The row elements of each column of the damping matrix are then
defined by the constraints associated with each dof that are required
to keep the system in that state — with one dof moving with constant
velocity and all the other dof’s not moving.

Mass Matrix: Apply a unit acceleration to each dof, one at a time.
Constrain the dof’s not being accelerated and define the
acceleration-dependent constraint forces required.

The row elements of each column of the mass matrix are then defined
by the constraints associated with keeping one dof accelerating at a
constant rate and the other dof’s stationary. Since in this model the
only forces transmitted between the masses are proportional to
displacement (the springs) and velocity (viscous damping), no forces
are transmitted between masses due to one of the masses accelerating.
This leads to a diagonal mass matrix in cases where the origin of the
coordinate systems are taken through the center of mass of the bodies
and the coordinate axes are aligned with the principal moments of
inertia of the body.

Table 2.1 shows how the three matrices are filled out. To fill out column 1 of
the mass, damping and stiffness matrices, mass 1 is given a unit acceleration,
velocity and displacement, respectively. Then the constraining forces required
to keep the system in that state are defined for each dof, where row 1 is for dof
1, row 2 is for dof 2 and row 3 is for dof 3.

10 Vibration Simulation Using MATLAB and ANSYS

gl Ly Gl
L HA A Y LA]
Column 1 Column 2 Column 3
accel accel accel
UNIT< vel pdofl Unity vel >dof2 Unit< vel pdof3
disp disp disp
_ml 0 0 | dofl
0 m, 0 | dof2
| 0 0 m, | dof3
¢, -, 0 |dofl
—C, c +cC, —c, |dof2
| O —C, ¢, |dof3
[k, -k, 0 |dofl
-k k, +k, -k, |dof2
| 0 -k, k, |dof3

Table 2.1: m, ¢, k columns and associated dof displacements. The cross-hatched masses in
the figures above each column are constrained and non-cross-hatched mass is moved a unit
displacement.

13412

The general matrix form for a tdof system is shown below, where the “ij
subscripts in m;;, ¢;, k; are defined as follows: “i” is the row number and

1341

'}’ is the column number.

ij?

=1 =2 =3
i=1lm,m,m;, ||z ¢ ¢ || 2 k, k, k;; || 2 K
Cuculy || 2, [+ Ky kpky (|2, [=|E 2.1
ky ky, kyy || 24 E

1=2\m, my,my, ||z

1=3|m, my, my, || Z, €31 €35 Cpy || Z3

Mass Damping Stiffness

Chapter 2 Transfer Function Analysis 11

Expanding the matrix equations of motion by multiplying across and down:
m, 2, +m,Z, + myZ, + ¢,z +¢,2, +C;yZ, + K, 2, +kz, +k;;z, =F (2.2)
m,,Z, +my,Z, +myZ, +¢,2 +¢,,2, +¢,,2, +k, 7, +K,,Z, +k,;z, =F, (2.3)
m,, 7z +my,Z, + myuZ, +¢,, 2, +¢,2, +¢,,7, +k,,Z, +ky,2, +k,z, =F (2.4)
The matrix equations of motion for our tdof problem, from Table 2.1, is:

m 0 0 ||Z c —C, 0 ||z

Om, 0 {|% |+|—, (¢,+¢c,) —¢, ||2,

0 0m,||Z 0 -, c, ||z, 2.5
Kk -k 017[z] [F '
+ |-k, (k,+k,) k,{lz, [=IF
0 -k, k, || z, F,
Expanding:

mZ +¢z —cz,+kz -kz, =F
m,z, — ¢z, +(c, +¢,)z, —c,z, —kz, + (k, +k,)z, - k,z, =F, (2.6a,b,c)

m,Z, —c,z, +¢,Z, —k,z, +k,z, =F,
2.2.3 Checks on Equations of Motion for Linear Mechanical Systems

Two quick checks which should always be carried out for linear mechanical
systems are the following:

1) All diagonal terms must be positive.

2) The mass, damping and stiffness matrices must be symmetrical.
For example k; =k for the stiffness matrix.

2.2.4 Six Degree of Freedom (6dof) Model — Stiffness Matrix

The stiffness matrix development for a more complicated model than the tdof
model used so far is shown below. The figure below shows a 6dof system
with a rigid body mode and no damping.

12 Vibration Simulation Using MATLAB and ANSYS

2z, k, 22
m, 2 6
I '_l:}/— 2z, K e z,
v —/\/r_>—z ‘
4
4 5
/\/
— k

Figure 2.2: 6dof model schematic.

Moving each dof a unit displacement and then writing down the reaction
forces to constrain that configuration for each of the column elements, the
stiffness matrix for this example can be written by inspection as shown in
Table 2.2. Note that the symmetry and positive diagonal checks are satisfied.

[(k, +k,) -k, 0 0 0 -k,
-k, k, +k, +k,) -, 0 %, 0
0 -k, (k,+k,+k;) -k, -k 0
0 0 -k, (k, +k;) —k; 0
0 -k, —ks -k, (ks+kotk;) O
Lk, 0 0 0 0 k, |

Table 2.2: Stiffness matrix terms for 6dof system.
2.2.5 Rotary Actuator Model — Stiffness and Mass Matrices

The technique is also applicable to systems with rotations combined with
translations, as long as rotations are kept small. The system shown below
represents a simplified rotary actuator from a disk drive that pivots about its
mass center, has force applied at the left-hand end (representing the rotary
voice coil motor) and has a “recording head” m, at the right-hand end. The

“head” is connected to the end of the actuator with a spring and the pivot
bearing is connected to ground through the radial stiffness of its bearing.

Chapter 2 Transfer Function Analysis ’ 13

Figure 2.3: Rotary actuator schematic.

Starting off by defining the degrees of freedom, stiffnesses, mass and inertia
terms:

dof:
Z translation of actuator
Zy rotation of actuator
Z3 translation of head
Stiffnesses:
k, actuator bearing radial stiffness
k; “suspension” stiffness
Inertias:

my,J; actuator mass, inertia
m, “head” mass

14 Vibration Simulation Using MATLAB and ANSYS

First Column: z1=1

Second Column: z2 =1

Third Column: z3 =1

Rotary Actuator Stiffness Example

Figure 2.4: Unit displacements to define mass and stiffeness matrices.

See Figure 2.4 to define the entries of each column of (2.7), the
forces/moments required to constrain the respective dof in the configuration
shown.

Chapter 2 Transfer Function Analysis 15

m 00 z, (k, +k,) Lk, -k, |l z E -F,
0J,0(|% Lk, Lk, -Lk, ||z, |=|T, |{=|FE] 2.7
00m,||Z -k, -Lk, k, ||z 0 0
E =-F (2.8)
T, =El (2.9)

2.3 Single Degree of Freedom (sdof) System Transfer Function
and Frequency Response

2.3.1 sdof System Definition, Equations of Motion

The sdof system to be analyzed is shown below. The system consists of a
mass, m, connected to ground by a spring of stiffness k and a damper with
viscous damping coefficient c. Since the mass can only move in the z
direction, a single degree of freedom is sufficient to define the system
configuration. Force F is applied to the mass.

T

Figure 2.5: Single degree of freedom system. ;
The equation of motion for this system is given by:
mZ+cz+kz=F (2.10)
2.3.2 Transfer Function |

Taking the Laplace transform of a general second order differential equation
(DE) with initial conditions is:

16 Vibration Simulation Using MATLAB and ANSYS

Second Order DE: £{%(t)} = s’z(s) — sz(0) — 2(0) , 2.11)

where z(0) and z(0) are position and velocity initial conditions, respectively,

and z(s) is the Laplace transform of z(t). See Appendix 2 for more on Laplace
transforms.

1
Because we are taking a transfer function, representing the steady state

response of the system to a sinusoidal input, initial conditions are set to zero,
leaving

2{7(t)} = s2(s) (2.12)

The Laplace transform of the sdof equation of motion (2.10), where F(s)
represents the Laplace transform of F, is:

ms?z(s) + csz(s) + kz(s) = F(s) 2.13)

Solving for the transfer function:

__ 1 ___ Um - (2.14)
F(s) ms®+cs+k LS
m m

We can simplify the equation above by applying the following definitions:

1) @ = k , where @, is the undamped natural frequency,
m

rad/sec
2) ¢, =2vkm , where c_is the “critical” damping value

3) { is the amount of proportional damping, typically
stated as a percentage of critical damping

4) 2{o, is the multiplier of the velocity term, z ,
developed below:

Chapter 2 Transfer Function Analysis 17

= =2,

m
=2i\/z

’ c, Vm
2c \/—lz

(2.15)
' " 2Jkm vm
=<
m
Rewriting, using the above substitutions:
xS __ Um 2.16)

Fis) s +20m s+’

2.3.3 Frequency Response

Substituting “ jo” for “s” to calculate the frequency response, where “j” is the

imaginary operator:

z(jo) 1/m
F(jo) (jo)’ +20o, (jo)+ o]
_ 1/m
-0 + 2000, j+ o
2
- Vo) @2.17a,b.c,d,e)

: 2
S
® @

_ (me)
73N ot
[m_;_l)JrZCwnJ

(0 ®

1/(me?)
(5] (%)

The frequency response equation above shows how the ratio (z/F) varies as a
function of frequency, ®w. The ratio is a complex number that has some

interesting properties at different values of the ratio (®, /®).

18 Vibration Simulation Using MATLAB and ANSY'S

At low frequencies relative to the resonant frequency, ®: >> w®, >> @’ , and
the transfer function is given by:

2(j0) _ 1/m
F(jo) - +2{on,j+e]
. _Um_ 1 1 1 (2.18)
T me) (k) k
m;
m

Since the frequency response value at any frequency is a complex number, we
can take the magnitude and phase.

z(jm) _ 1
F(jm)| k

| (2.19a,b)
4200

F(jo)

Thus, the gain at low frequencies is a constant, (1/k) or the inverse of the
stiffness. Phase is 0° because the sign is positive.

At high frequencies, ®” >> w®, >> @], the transfer function is given by:

z(jo) _ I/m
. - 2 . 2

F(jo) - +2Lon, j+w; (2.20)
_l/m -1
T -0 mo’

Once again, taking the magnitude and phase:
|z(ja))|= -1]_ 1
|FGo)| | me?| moe?
(2.21a,b)

2209 _ g
F(jo)

At high frequencies, the gain is given by 1/(mo’) and the phase is —180°
because the sign is negative.

Chapter 2 Transfer Function Analysis ' 19

At resonance, ® = @, , the transfer function is given by:

z(jo) _ 1/m

= 2.22
F(jo) - +2Loo, j+o (222)
_VYm _/m 1 1 -1 1k —j/k

2Xwo,j 200l 2Noim 20km 20k 25 2

m
Taking magnitude and phase at resonance:
2(jo) ’—]/k 1/k
F(jw)
(2.23a,b)
220D _ gy
F(jo)

The magnitude at resonance is seen to be the gain at low frequency, 1/k,
divided by 2{. Since { is typically a small number, for example 1% of

critical damping or 0.01, the magnitude at resonance is seen to be amplified.
At resonance the phase angle is —90°.

SDOF frequency response magnitudes for zeta = 0.1 to 1.0 in steps of 0.1

10

magnitude
o
o,
TITE T T
T

IR

T T ITTT
[

TTTTT

10° 10° 10
frequency, rad/sec

Figure 2.6: sdof magnitude versus frequency for different damping ratios.

20 Vibration Simulation Using MATLAB and ANSYS

The MATLAB code sdofxfer.m, listed in the next section, is used to plot the
frequency responses from (2.17) for a range of damping values for
m = k = 1.0, shown in Figures 2.6 and 2.7. These m and k values give a ®,

value of 1.0 rad/sec.

Since @, is 1.0 rad/sec, the resonant peak in Figure 2.6 should occur at that
frequency. The low frequency magnitude was shown above to be equal to
1/k = 1.0. The curves for all the damping values approach 1.0 (10° =1.0) at

low frequencies. At high frequencies the magnitude is given by 1/ (mmz),

and since m = 1, we should have magnitude of 1/@’*. Checking the plot
above, at a frequency of 10 rad/sec, the magnitude should be 1/100 or 0.01.

Note that the slope of the low frequency asymptote is zero, meaning it is not
changing with frequency. However, the slope of the high frequency asymptote
is “—2,” meaning that for every decade increase in frequency the magnitude at
high frequency decreases by two orders of magnitude by virtue of the o’ term
in the denominator. The “—-2 " slope on a log magnitude versus log frequency
plot comes from the following:

log|high frequency| o log (Lz) = log(co‘z) = —2log(w) (2.24)
o

SDOF frequency response phases for zeta = 0.1 to 1.0 in steps of 0.1

e e

magnitude

frequency, rad/sec

Figure 2.7: sdof phase versus frequency for different damping ratios.

Chapter 2 Transfer Function Analysis ' 21

From Figure 2.7, note that at resonance (@, = 1.0rad/sec) the phase for all

values of damping is —90°. At low frequencies phase is approaching 0° and
at high frequencies it is approaching —180".

2.3.4 MATLAB Code sdofxfer.m Description

The code uses the transfer function form shown in (2.14) to calculate the
complex quantity “xfer,” where s = jw, using a vector of defined ® values.

Magnitude and phase of the complex value of the transfer function are then
plotted versus frequency.

2.3.5 MATLAB Code sdofxfer.m Listing

% sdofxfer.m plotting frequency responses of sdof model for different damping values
cif;
clear alt;
% assign values for mass, percentage of critical damping, and stiffnesses
% zeta is a vector of damping values from 10% to 100% in steps of 10%
m=1;
zeta=0.1:0.1:1; % 0.1 = 10% of critical
k=1,
wn = sqrt(k/m);
% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10~-1 = 0.1 rad/sec, and 1 is
% 10”1 = 10 rad/sec. The 400 defines 400 frequency points.

w = logspace(-1,1,400);
% pre-calculate the radians to degree conversion

rad2deg = 180/pi;

% define s as the imaginary operator times the radian frequency vector

s =j*w;
% define a for loop to cycle through all the damping values for calculating
% magnitude and phase

for cnt = 1:length(zeta)
% define the frequency response to be evaluated

xfer(cnt,:) = (1/m) ./ (s.°2 + 2*zeta(cnt)*wn*s + wn”2);

22 Vibration Simulation Using MATLAB and ANSYS

% calculate the magnitude and phase of each frequency response
mag(cnt,:) = abs(xfer(cnt,:));
phs(cnt,:) = angle(xfer(cnt,:))*rad2deg;
end
% define a for loop to cycle through all the damping values for plotting magnitude
for cnt = l:length(zeta)
loglog(w,mag(cnt,:),’k-")
title('SDOF frequency response magnitudes for zeta = 0.1 to 1.0 in steps of 0.1")
xlabel('frequency, rad/sec')
ylabel('magnitude")
grid
hold on
end
hold off
grid on
disp('execution paused to display figure, "enter" to continue'); pause
% define a for loop to cycle through all the damping values for plotting phase
for cnt = 1:length(zeta)
semilogx(w,phs(cnt,:),'’k-")
title('SDOF frequency response phases for zeta = 0.1 to 1.0 in steps of 0.1')
xlabel('frequency, rad/sec’)
ylabel('magnitude’)
grid
hold on
end
hold off B
grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

Chapter 2 Transfer Function Analysis 23

2.4 tdof Laplace Transform, Transfer Functions,
Characteristic Equation, Poles, Zeros

We now return to the original tdof model as shown in Figure 2.1. In order to
define transfer functions and understand poles and zeros of the system, we
need to transform from the time domain to the frequency domain. We do this
by taking Laplace transforms of the equations of motion.

2.4.1 Laplace Transforms with Zero Initial Conditions
Repeating (2.5) for the tdof system:

m 0 0 ||Z < —C, 0 || z
Om, 0 ||Z,|+|—¢ (c +c,) —¢, |z,
0 Om,||Z 0 -, c, i 7,
k, -k, 0 |z
+1-k, (k +k,) =k, ||z, |=
0 -k, k, ||z,

(2.25)

ST m

Taking Laplace transforms assuming initial conditions of zero, where
z,, Z, Z, now represent the Laplace transforms of the original z,, z, z;:

2
m 0 0 ||s°z < -, 0 || sz,

0m, 0 |[s’z, [+]|—¢, (c, +c,) —c, ||sz,

0 0m,||s’z 0 - c, ||sz ;
3 3 2 2 3 (226)

k, -k, 0 ||z E

+i-k, (k+k;) -k, |z, |=|F

0 -k, k, || z, F

Rearranging:

(m;s* +c,;s+k,) (-¢s~k,) 0 z, F,
(—cs-k) (ms’+cs+es+k +k,) (-es-k,) ||z, | =|F
0 (-¢c,s-k,) (m,s* +c,5+k,) || z, E,

(2.27)

24 Vibration Simulation Using MATLAB and ANSYS

2.4.2 Solving for Transfer Functions

In this section we solve for the nine possible transfer functions for all
combinations of degrees of freedom where force is applied and where
displacements are taken. Solving for the transfer functions for greater than a
2dof system is a task not to be taken lightly — symbolic algebra programs such
as Mathematica, Maple or the MATLAB Symbolic Toolbox should be used.

L 4 2
F1FZF3
T Y
F12F3
L 4 %
F123

Table 2.3: Nine possible transfer functions for tdof system.

The results below were obtained by use of a symbolic algebra program.

z {s4 (m,m,}+s’ (m,c, +m,c, + m,¢,)

il /D 2.28
F } en (2.28)

+s (¢, +m,k, +mk, +m,k,) +s(ck, +¢,k) +kk,

% = {s3 (mye,) +5% (¢, +myk,) +s(ck, +kc,)+k1k2}/Den (2.29)
2

% ={s*(c,c,) +s(c,k, +¢,k,) +k k, }/Den (2.30)
) ,

%2 218 (mye,) +57 (c,c; +myk,) +s(ek, +¢,k,) +k,k, }/Den 231)

s*(mm,)+s’(m,c, +myc,)
=2 =3+s’(mk, +¢,c, +mk,) /Den - (2.32)
+s(ck, + ¢k,)+kk,

Z,

== {s’(m,c,) +s*(mk, +¢,c,) +s(ck, +¢,k,) +kk,}/Den (2.33)

3

Chapter 2 Transfer Function Analysis ' 25

%:{sz(clc2)+s(clk2 +¢,k,) +kk, }/Den (2.34)
1

;_3 ={s’(m,c,)+s” (mk, +c,c,) +s(ck, +¢,k,) +kk, }/Den (2.35)
2

s* (mm, }+s’ (m,c, + mc, +m,c,)

% l4s? (mk, +mk, +mk, +cc,) }/Den (2.36)
’ +s(c,k, +ek,)+ (kk,)

Where Den is:

(s‘ (m,m,m,)+s’ (m,m,c, +m,m,c, +m,m,c, +m,m,c,)
+s’ (m;m,k, +m;m k, + m;m,k, +m,c,c, +m,c,c, +mcc,
Den = s’ +k,m,m,) r
+s(m,c k, +m,c,k, +m,¢,k, + m,c k, +m,c,k, +m,ck,)
+(mkk, +m,k k, +m;k k,)

(2.37)

Note that all the transfer functions have the same denominator, Den, called the
characteristic equation.

To simplify the system for hand calculations, take:

m =m,=m;=m
¢, =¢c,=¢C (2.38)
k, =k, =k

2, =2 =(m’s* +3mes’ +(c? +3mk)s? + 2cks + k) /Denl (2.39)
E

1

2, =%=(mcs3 +(c? +mk)s” +2cks +k*)/ Denl (2.40)

2

zZ, =%=(czs2 +20ks+k2)/Den1 (2.41)

3

26 Vibration Simulation Using MATLAB and ANSYS

z, = ;_z =(mes® +(c” +mk)s” +(2ck)s +k*)/ Den! (2.42)

1

z, = ;—2 = (mzs4 +2mes’ +(2mk +¢?) + 20ks+k2)/Den1 (2.43)
2

Z, = ;_2 = (mcs3 +(c*+ mk)s” + 2cks + Kk)/Denl (2.44)
3

z,, =;—3= (czs2 +20ks+k2)/Den1 (2.45)
1

Z, =%=(mcs’ +(c? +mk)s? +2cks +k*)/ Denl (2.46)

2

Zy, = % = (mzs4 +3mes’ +(c” +3mk s + 2cks + k’)/Denl (2.47)

3

Where:
Denl = {m’s4 +4m?cs® + (4m2k +3mc?)s2 + 6mcks + 3mk> } s? (2.48)

To enable hand calculations of roots, simplify another level by making
damping equal to zero:

% = (m’s* + 3mks® +k*)/ Den2 (2.49)
1
%:(mks2 +k2)/Den2 (2.50)
2
% =k?/Den2 ; (2.51)

3

2 =(mks” 1)/ Den? (2.52)

1

Chapter 2 Transfer Function Analysis ' 27

;—2 = (mzs4 +2mks’ +k*)/Den2 (2.53)
2

;_2 = (mks’ +k*)/Den2 , (2.54)
] :

zZ, ., . ’

— =%k*/Den2 B (2.55)
Fl

;—3=(mks2 +k?)/Den2 2.56) |
2 ‘ g

;—3 = (m?s* +3mks® +k*)/ Den2 @S
3

Den2 =5’ (m3s4 +4m’ks’ +3mk’) (2.58)

2.4.3 Transfer Function Matrix for Undamped Model
A more convenient method of arranging and keeping track of the various

transfer functions is to use a matrix form for the transfer function, called the
transfer function matrix:

Zy Zy Zy (2.59)

Where:
Z, z, 2z, Z, || K
Z, |=12Zy Zyp Zy || K (2.60)
Zy Z, Zy Zy || B

The transfer function matrix can then be written for the undamped case as
follows, where each term of the numerator matrix is divided by the common
denominator:

28 Vibration Simulation Using MATLAB and ANSYS

o
Z, | =
L %3
[(m?* +3mks® +k?) (mks?+k?) K
(mks® +k*) (m’s* +2mks” + k%) (mks® +k?) F,
I 'S (mks® +k?) (m’s* +3mks® +k?) K,
s* (m’s* +4m’ks’ +3mk’) F,
(2.61)

2.4.4 Four Distinct Transfer Functions

We will be dealing with only Single Input Single Output (SISO) systems until
Chapter 19, when a Multi Input Multi Output (MIMO) system is examined.
This means that we will be applying only a single force to the system at any
time, F, F, or F, ,and will only be taking the displacement of a single degree

of freedom, z, z, or z,.

Because there are three inputs and three outputs, there are nine possible SISO
transfer functions to investigate. However, because of the symmetry of the
system (z; = z;) there are only four distinct transfer functions. Expanding the
denominator into factors and simplifying:

m’s* + 3mks? + k?

Zl
il B 2.62
F ¢? (m354 +4m°ks® + 3mk2) (2.62)
z, - (mks® +k?)
F s (m3s4 +4m’ks? +3mk2)
B k(ms’ +k)
, s*(ms’ +k)(m’s® + 3km)
: k (not lling of pole/zero) (2.63)
= m———— note cancelling ot pole/zero .
s’(m’s? +3km) BOTP
k2
% (2.64)

F, s? (m:‘s4 + 4m?ks? +3mk2)

Chapter 2 Transfer Function Analysis 29

2 4 2 2
z _ m’s’ +2mks” +k : (2.65)
F, ¢ (m3s4+4m2ks2 +3mk)

2.4.5 Poles

The poles, eigenvalues, or resonant frequencies, are the roots of the
characteristic equation. Poles show the frequencies where the system will
amplify inputs, and are a basic characteristic of the system. The poles are not
a function of which transfer function is used since all the transfer functions for
a given system have the same characteristic equation, as shown by the
common denominator of (2.61).

The poles for a system depend only on the distribution of mass, stiffness,
and damping throughout the system, not on where the forces are applied
or where displacements are measured.

Setting the characteristic equation equal to zero and solving for the roots

(poles):

s? (m’s* +4m’ks? +3mk?) = 0 ; (2.66)

s* =01is a double root at the origin s,, =0 (2.67)
Now taking the term in parentheses and setting equal to zero:

(m*)s* +(4m’k)s” +(3mk>) =0 - (268)
Solving as a quadratic in s

1
—~4m’k +(16m*k’ ~12m*k*)?

3

2
S

2m

_ 4w’k (4m'K’)%

2m’

_ —4m’k+2m’k _ -2m’k

2m’ m’

30 Vibration Simulation Using MATLAB and ANSYS

_ 2k -6k
2m’ 2m

=X X S (2.69)

Sa =ij\/§ =#jl @.70)
S =ij,/% = +j1.732 @.71)

Because there is no damping, the poles all fall on the s-plane imaginary axis.
2.4.6 Zeros

The zeros of each SISO transfer function are defined by the roots of its
numerator. Zeros show the frequencies where the system will attenuate inputs.
Unlike the poles, which are a characteristic of the system and are the same for
every transfer function, zeros can be different for every transfer function and
some transfer functions may have no zeros. Chapter 4 will discuss one
physical interpretation of zeros, showing how to calculate the number of zeros
for various transfer functions for a series-connected lumped mass system.

Calculate the z, /F, zeros:

m’s* +3mks? +k? =0 o 2.72)

~3mk +(9m’k’ —4m’k*)%

2

s =
2m

—3mk +/5mk _ -3k ++/5k

2

2m 2m

=[ﬂ(—3§x/§ J =(£)(_o.3gzo), (;ll‘l_j(—z.sls) 2.73)

Taking the square root of the two values above gives two pair of complex
conjugate roots:

Chapter 2 Transfer Function Analysis 31
) k . '
5., =%j0.618,|— =£j0.618 (2.74)
m
R
Sy4 =1jl.618,/— =£j1 .618 (2.75)
m
Calculate the z, /F zeros: 3
mks? +k> =0 (2.76)
—_— 2 —_—
g _k Q.77
mk m
12 = ij\/E =1j (2.78)
m
Calculate the z,/F, zeros:
k? =0 there are no zeros. 2.79)
Calculate the z,/F, zeros:
m’s* +2mks’ +k? =0 (2.80)
, —2mk+(4m’k’ —4m’k?)
S =
2m*
_Zmzk B (2.81)
2m m
k. |
8§, =1j,/]—=%j (2.82)
m
$34 =] (2.83)

As with the poles, since there is no damping in the system, all the zeros are

also on the imaginary axis.

32 Vibration Simulation Using MATLAB and ANSYS

2.4.7 Summarizing Poles and Zeros, Matrix Format

(£0.62,£1.62) 1j none
1] (£5,1)) 1]
+; +0.62,+1.62
none . g (:) 2.84)
' (0j)(£1,£1.732)j

The 3x3 matrix of zero values for the 3x3 transfer function matrix is in the
numerator of (2.82) and the pole values are in the denominator.

2.5 MATLAB Code tdofpz3x3.m — Plot Poles and Zeros
2.5.1 Code Description

The program listing below uses the “num/den” form of the transfer function
and calculates and plots all nine pole/zero combinations for the nine different
transfer functions. It prompts for values of the two dampers, c1 and c2, where
the default values (hitting the “enter” key) are set to zero to match the hand-
calculated values in (2.82). The “transfer function” forms of the transfer
functions are then converted to “zpk - zero/pole/gain” form to enable graphical
construction of frequency response in the next chapter.

The values of the poles and zeros as well as the “zpk” forms of the transfer
functions are listed in the MATLAB command window.

Note that in most MATLAB code, the critical definitions and calculations take
only a few commands while plotting and annotating the plots take the bulk of

the space.

2.5.2 Code Listing

% tdofpz3x3.m plotting poles/zeros of tdof model, all 9 plots
clf;
clear all;
% using MATLAB's pzmap function with the "tf" form using num/den
% to define the numerator and denominator terms of the different
% transfer functionx
% assign values for masses, damping, and stiffnesses
ml=1;

Chapter 2 Transfer Function Analysis

33

%

%

%

%

m3=1;
kl=1;
k2=1,;

prompt for c1 and c2 values, set to zero to match closed form solution
cl = input(‘enter value for damper c1, default is zero, ... ");
if isempty(c1)
cl =0
end
c2 = input(‘enter value for damper c2, default is zero, ... ');
if isempty(c2)
c2=0;

end

define row vectors of numerator and denominator coefficients

den = [(m1*m2*m3) (m2*m3*cl + m1*m3*cl + m1*m2*c2 + m1*m3*c2) ...

(m1*m3*k]l + m1*m3*k2 + m1*m2*k2 + m2*c1*c2 + m3*cl*c2 +...
ml*cl*c2 + k1*m2*m3) ...
(m3*c1*k2 + m2*c2*k]l + m1*c2*k]l + ml*cl*k2 + ...
m3*c2*kl + m2*c1*k2) ...
(m1*k1*k2 + m2*k1*k2 + m3*k1*k2) 0 0];

zl Inum = [(m2*m3) (m3*cl + m3*c2 + m2*c2) (c1*c2 + m2*k2 +...
m3*kl + m3*k2) (c1*k2 + c2*kl) (k1*k2)];

Z21num = [(m3*cl) (c1*c2 + m3*k1) (c1*k2 + c2*k1) (k1*k2)];
z31num = [(c1*c2) (c1*k2 + c2*k1) (k1*k2)];

z22num = [(m1*m3) (m1*c2 + m3*cl) (m1*k2 + c1*c2 + m3*k1) ...
(c1*k2 + c2*k1) (k1*k2)];

use the "tf" function to convert to define "transfer function" systems

syszl1 = tf(zl lnum,den)

sysz21 = tf(z2 1num,den)

sysz31 = tf(z3 1num,den)

sysz22 = tf(z22num,den)

use the "zpk" function to convert from transfer function to zero/pole/gain form
zpkz11 = zpk(syszl 1)

zpkz21 = zpk(sysz21)

zpkz31 = zpk(sysz31)

34 Vibration Simulation Using MATLAB and ANSYS

zpkz22 = zpk(sysz22)

% use the "pzmap" function to map the poles and zeros of each transfer function
[p11,z11] = pzmap(sysz11);
[p21,221] = pzmap(sysz21);
[p31 231} = pzmap(sysz31);
[p22,222] = pzmap(sysz22);
pll
zll
z21
z31
722

% plot z11 for later use

subplot(1,1,1)
plot(real(p11),imag(p11),'k*")
hold on
plot(real(z11),imag(z11),'ko")
title('Poles and Zeros of z11")
ylabel('Imag’)
axis([-22-22])
axis('square’)

grid

hold off

disp(‘execution paused to display figure, "enter” to continue'); pause
% plot all 9 plots on a 3x3 grid

subplot(3,3,1)
plot(real(p11),imag(p11),'’k*")
hold on
plot(real(z11),imag(z11),’ko")
title('Poles and Zeros of z11")
ylabel('Imag')
axis([-22-22))
axis('square’)

grid

hold off

subplot(3,3,2)
plot(real(p21),imag(p21),'’k*")
hold on
plot(real(z21),imag(z21),'ko")
title("Poles and Zeros of z12")

Chapter 2 Transfer Function Analysis

35

ylabel('Imag')
axis([-22 -2 2])
axis('square’)
grid

hold off

subplot(3,3,3)

plot(real(p3 1),imag(p31),'’k*")
hold on
plot(real(z31),imag(z31),'ko")
title('Poles and Zeros of z13")
ylabel('Imag')

axis([-22-2 2])
axis('square’)

grid

hold off

subplot(3,3,4)
plot(real(p21),imag(p21),'’k*")
hold on
plot(real(z21),imag(221),'ko")
title('Poles and Zeros of z21")
ylabel('Imag')
axis([-22-22])
axis('square’)

grid

hold off

subplot(3,3,5)
plot(real(p22),imag(p22),'’k*")
hold on
plot(real(z22),imag(z22),'ko")
title('Poles and Zeros of z22")
ylabel('Imag")
axis([-22-22))
axis('square’)

grid

hold off

subplot(3,3,6)
plot(real(p21),imag(p21),'’k*")
hold on
plot(real(z21),imag(z21),’ko")
title('Poles and Zeros of z23)
ylabel('Imag')

axis([-2 2 -2 2))
axis('square’)

grid

hold off

subplot(3,3,7)
plot(real(p31),imag(p31),'’k*")
hold on
plot(real(z31),imag(z31),'ko")
title('Poles and Zeros of z31")

36 Vibration Simulation Using MATLAB and ANSYS

xlabel('Real")
ylabel('Imag")
axis([-22-22))
axis('square’)
grid

hold off

subplot(3,3,8)

plot(real(p21),imag(p21),’k*")

hold on

plot(real(z21),imag(z21),'ko")

title('Poles and Zeros of z32")

xlabel('Real’)

ylabel('Imag")

axis([-22-22])

axis('square’)

grid

hold off

subplot(3,3,9)

plot(real(p11),imag(p11),k*")

hold on

plot(real(zl1),imag(z1 1),'’ko")

title('Poles and Zeros of z33")

xlabel('Real')

ylabel('Imag’)

axis([-22-22)])

axis('square’)

grid

hold off

disp(‘execution paused to display figure, "enter" to continue'); pause
% check for real axis values to set plot scale

z11_realmax = max(abs(real(z11)));
z21 realmax = max(abs(real(z21)));
z31_realmax = max(abs(real(z31)));
722 realmax = max(abs(real(z22)));
maxplot = max([z11 realmax z21 realmax z31 realmax z22_realmax]);
if maxplot > 2
maxplot = ceil(maxplot);
else
maxplot = 2.0;

end

z11_realmax = max(abs(real(z11)));
subplot(1,1,1)

Chapter 2 Transfer Function Analysis

37

plot(real(p11),imag(p!1),'’k*")

hold on

plot(real(zl 1),imag(z11),'ko")

title('Poles and Zeros of z1 1, z33")
ylabel('Imag’)

axis([-maxplot maxplot -maxplot maxplot})
axis('square’)

grid

hold off

disp(‘execution paused to display figure, "enter" to continue'); pause

plot(real(p21),imag(p21),'’k*")

hold on

plot(real(z21),imag(z21),%o")

title('Poles and Zeros of 221, z12, 723, z32")
ylabel('Imag)

axis([-maxplot maxplot -maxplot maxplot})
axis('square’)

grid

hold off

disp(‘execution paused to display figure, "enter” to continue'); pause

plot(real(p31),imag(p31),'’k*")

hold on

plot(real(z31),imag(z31),’ko")

title('Poles and Zeros of z31, z13')
xlabel('Real')

ylabel('lmag’)

axis([-maxplot maxplot -maxplot maxplot])
axis('square’)

grid

hold off

disp(‘'execution paused to display figure, "enter" to continue'); pause

plot(real(p22),imag(p22),'k*")

hold on

plot(real(z22),imag(z22),’ko")

title('Poles and Zeros of z22")

ylabel('Imag')

axis([-maxplot maxplot -maxplot maxplot])
axis('square’)

grid

hold off

38 Vibration Simulation Using MATLAB and ANSYS

2.5.3 Code Output — Pole/Zero Plots in Complex Plane
2.5.3.1 Undamped Model — Pole/Zero Plots
The pole/zero plot and pole/zero calculated values for c1 = ¢2 = 0 are shown

below. Poles are plotted as asterisks and zeros as circles.

Poles and Zeros of z11 Poles and Zeros of z12 Poles and Zeros of 213
2 —
$*
|
1------ 4‘# 77777
g) |
EO T
I
1 ---=~- 1&- —————
2 t
2 [4] 2
Poles and Zeros of 223
2
*
|
1------ éé‘B 77777
o | 8’ | o |
EO it B - oo EO L
| | |
AR - - - - - @ ————— AR----- é@ —————
2 t 2 1
-2 0 2 2 0 2
Poles and Zeros of 232 Poles and Zeros of z33
2 2 —
*)
| T
1------ ®----- 1----~- -
1 ¢
L I & ol - e __
g0 + E° i
! U]
AE----- e?} ————— 1 - - -~ - - -
; b
2 -2
-2 0 2 2 0 2
Real Real

Figure 2.8: Pole/zero plots for nine transfer functions. Poles are indicated by asterisks and
zeros by circles.

The first thing to notice about the pole/zero plots is that they all have the same
poles. The rigid body mode (resonant frequency = 0 hz) is evident by the pair
of zeros at the origin, £0j. The zeros of each particular transfer function are
seen to be dependent upon which transfer function is taken. Note that with
zero damping, all the poles and zeros are on the imaginary axis, indicating that
the real portions of their complex values are zero and that there is no damping.

Chapter 2 Transfer Function Analysis 39

In the next chapter we will discuss frequency responses of transfer functions
and will link the pole/zero locations in the complex plane to
amplification/attenuation regions of the frequency response plots.

The poles and zeros from the MATLAB output are listed below:

poles = v

0
0
0+ 1.7321i
0-1.7321i
0+ 1.00001
0 - 1.00001

zeros_zl1 =
0+1.6180i
0-1.6180i
0+0.61801
0-0.6180i

zeros_z21 =

0+ 1.0000i
0 - 1.00001

zeros_z31 =
Empty matrix: 0-by-1
zeros_z22 =
-0.0000 + 1.0000i
-0.0000 - 1.00001

0.0000 + 1.00001
0.0000 - 1.00001

Table 2.3: Poles and zeros of tdof transfer functions, undamped.

Repeating the matrix listing of pole/zero locations from previous analysis:

(£0.62,£1.62) tj none
j i) Ej
none 1j (10.62,%1.62)

: : (2.85)
(0j)(£1,£1.732)]

40 Vibration Simulation Using MATLAB and ANSYS

Note that MATLAB calculates an “Empty matrix 0 by 1” for the zeros of z31,
which matches our calculations which show “none.” Also note that several of
the plots, z12, z21, 222, 223 and 232, have zeros and poles overlaying each
other, where the pole cancels the effect of the zero. We will discuss this
cancellation further in the next chapter.

2.5.3.2 Damped Model — Pole/Zero Plots

If damping is not set to zero for ¢1 and/or c2, the poles (with the exception of
the two poles at the origin) and zeros will move from the imaginary axis to the
left hand side of the complex plane, with the real parts of the poles and zeros
having negative values. The pole/zero plot and MATLAB output listing
below are for values of ¢l = ¢2 = 0.1, arbitrarily chosen to illustrate the
“damped” case.

ZFT
1;,,_,3___,

-2

Poles and Zeros of 221
22— — 71—

+

Imag

o

|

|

|

|

1

|

|

|

Figure 2.9: Pole/zero plots for nine transfer functions for ¢1 = ¢2 = 0.1. Poles are indicated
by asterisks and zeros by circles. Negative real axis zeros not shown because of plot
scaling.

Chapter 2 Transfer Function Analysis 4]

The limited scale for the nine plots above do not show the real axis zeros, see
the figures below for the entire plot. The only poles/zeros that are on the
imaginary axis are the two poles at zero, the rigid body mode — which will be
described in detail in Chapter 3.

Poles and Zeros of 211, z33
10 - :

Imag

(=]

T

I

I

I

I

I
— -

I

I

I

I

I
ot

I

I

[

}

|
-7

I

|

I

I

i

2F----- 4o ®______ oo
| | I
| | i
A - T-m - [iy
| | |
7Y S 1o o [
| | |
| | I
Br----- Tom o = - - == [
I | |
-10 | ¢ 1
-10 -5 0 5 10

Figure 2.10: Expanded scale pole/zero plots for z11, z33 transfer functions — no real axis
zeros.

Poles and Zeros of 221, z12, 223, 232

10 T
| 1 |
| [|
] e A [| I
| 1 1
6 ----— + - - - - = - - — =~ - — - ==
| 1 1
1 1 1
s Tt T T T | I
1) 1
2 ————— e Y — - - — = [——

. é :

1 |
S S G S
= 1 ® |

2 ----- - . - [

1 | |

| | |

4r === T T (A [
) | |

HF - - - - - 4 e e — - o o ___ [
| | 1
| 1 1

Br----- Tom oo (Aaliii e |
| 1 |

-10- | 1 L

-10 -5 0 5 10

Figure 2.11: Expanded scale pole/zero plots for z21, z12, z23 and z32 transfer functions —
one real axis zero at -10.

42 Vibration Simulation Using MATLAB and ANSYS

Poles and Zeros of 231, 213

10— -
I I I
| | |
e i (I [
1 1 I
- - ---— 4+ - == -~ f— — = = = — _———— =
I I
i I I
e Ay [[
1 1 I
2'» 777777 4 - - g — - - — A
1
1

Imag
|
|
|
1
|

~ -
|
|
|
1
!
“+
|
|
|
|
|
|
]
1
|
|

i
)
;| S, 1 - - H_ v __ |
l 1 1
| | l
4k ----- TT T T T T (Al el
| | 1
B - —— — - 1o I, Lo ___J
I l |
l l l
8------ T T (il [l
| | 1
_10 L L I R |
-10 5 0 5 10
Real

Figure 2.12: Expanded scale pole/zero plots for z31 and z13 transfer functions — two real
axis zeros at -10.

Poles and Zeros of 222

10 —— - -
[|
| | |
e A [
| | 1
6 - - - -~ 4+ - == =~ - — == == ===
1 i |
| 1 |
S LI
| | 1
2 - - - - - g - — = = - - = =4
| é |
g ! ‘
g o - q - e
- | ®)
2k - - - — - [e
| | 1
| | |
el e T T T T VT T T T T [
1 1 |
B - - —— — 1 I - = T
| 1
| | 1
B------ T T T (A [ty
1 1 i
_10L 1 i I
-10 -5 0 5 10

Figure 2.13: Expanded scale pole/zero plots for z31 and z13 transfer functions — no real
axis zeros.

The MATLAB calculated values for the poles and zeros for the damped case
are below:

Chapter 2 Transfer Function Analysis 43

pll=

2 0
i 0
-0.1500 + 1.72551
-0.1500 - 1.7255i

-0.0500 + 0.9987i
-0.0500 - 0.99871

zl1l=

-0.1309 + 1.6127i
-0.1309 - 1.6127i
-0.0191 +0.61771
-0.0191 - 0.6177i

221 =
-10.0000

-0.0500 + 0.9987i
-0.0500 - 0.9987i

il
ing

31 = .

-10.0000 + 0.0000i
-10.0000 - 0.0000i

722 =

-0.0500 + 0.9987i

-0.0500 - 0.99871

-0.0500 + 0.9987i
-0.0500 - 0.99871

Table 2.4: Poles and zeros of tdof transfer functions, damped.

Several observations can be made about the poles and zeros above. First, all
of the poles with the exception of the two rigid body poles pl1 = 0 are to the
left of the imaginary axis, indicating that the system now has damping. Note
that there are several new zeros. The z21 transfer function now has a real zero
at ~10.0 in addition to the two complex zeros. The z31 transfer function has
two zeros now at —10, whereas for the no damping case it had no zeros. These
extra zeros do not show up on Figure 2.9 because of plot axis scaling but with
the real axis expanded in Figures 2.10 to 2.13 they appear. The reason for
these “additional” zeros can be seen if we look at the z21 and z31 transfer
functions, repeated from (2.31) and (2.34):

44 Vibration Simulation Using MATLAB and ANSYS

% ={s’ (myc,)+5° (cic, +myk,) +s(ck, +c,k,)+ klkz}/Den (2.86)
1

;_3 ={s" (cic;) +s(c,k, +¢,k,) +kk, }/ Den (2.87)

1
With values for c1 and ¢2 not equal to zero, the z21 transfer function is third
degree, meaning that it should have three roots. With damping equal to zero,
only two complex zeros are calculated by MATLAB and by hand. The third
root is located at —e= . As damping values for c1 and ¢2 are increased the root
at —o moves to the right, towards the origin.

The z31 transfer function has no zeros with zero damping, but is second
degree and with infinitely small damping values has two roots at —eo . As the
values of ¢l and c2 increase, the two zeros at —eo start moving toward the
origin.

2.5.3.3 Root Locus, tdofpz3x3_rlocus.m

In the last two sections we have discussed pole/zero plots for undamped and
damped models. For the damped model we chose values of 0.1 for cl and c2.
It would be nice to have a systematic method to display poles and zeros for a
range of damping values. There is a MATLAB Control Toolbox function
“rlocus” which plots the root locus for an open-loop SISO system. We could
use this function if the damping values could be broken out of the system and
be treated as a feedback gain. Unfortunately for our tdof system this is not
possible, but we can still plot a locus by using a for-loop.

The code listed below, tdofpz3x3_rlocus.m, is taken from the initial section
of tdofpz3x3.m. A for-loop cycles through a vector of damping values,
calculating and plotting the poles and zeroes for each damping value.

echo off
% tdofpz3x3_rlocus.m plotting locus of poles/zeros of z11 for tdof
% model for range of damping values.

clf;

clear all;
% assign values for masses, damping, and stiffnesses

ml=1,

m2=1;
m3=1,

Chapter 2 Transfer Function Analysis

45

%

%

%

%

%

kl

L
k=1,

define vector of damping values for cl and c2
cvec=[0.2.4.6.81.01.11.051.11.151.16];
for cnt = 1:length(cvec)

cl = cvec(cnt);

c2 = cvec(cnt);

define row vectors of numerator and denominator coefficients

den = [(m1*m2*m3) (m2*m3*cl + ml*m3*cl + m1*m2*c2 + m1*m3*c2) ...

(m1*m3*k1 + m1*m3*k2 + m1*m2*k2 + m2*c1*c2 + m3*cl*c2 + ...
ml*c1*c2 + k1*m2*m3) ...
(m3*c1*k2 + m2*c2*kl + m1*c2*k1 + ml*c1*k2 + ...
m3*c2*kl + m2*cl*k2) ...
(m1*k1*k2 + m2*k1*k2 + m3*k1*k2) 0 0];

zl lnum = [(m2*m3) (m3*c1 + m3*c2 + m2*c2) ...
(cl1*c2 + m2*k2 + m3*k1 + m3*k2) .(c1*k2 + c2*k1) (k1*k2)];

221num = [(m3*c1) (c1*c2 + m3*k1) (c1*k2 + c2*k1) (k1*k2)];
z31num = [(c1*c2) (c1*k2 + c2*k1) (k1*k2)];

222num = [(m1*m3) (m1*c2 + m3*cl) (m1*k2 + c1*c2 + m3*kl) ...
(c1*k2 + c2*k1) (k1*k2)];

use the "tf" function to convert to define "transfer function" systems
syszl1 = tf(z1 Inum,den);

sysz21 = tf(22 1num,den);

sysz31 = tf{z3 | num,den);

sysz22 = tf(z22num,den);

use the "pzmap" function to map the poles and zeros of each transfer function
[p11,z11] = pzmap(sysz11);

[p21,221] = pzmap(sysz21);

[p31,231] = pzmap(sysz31);

[p22,222] = pzmap(sysz22);,

plot poles and zeros of z11

subplot(1,1,1)

46 Vibration Simulation Using MATLAB and ANSYS

plot(real(p11),imag(p11),'’k*"
hold on

plot(real(z11),imag(z1 1),'ko")

title('"Poles and Zeros of z11 for range of damping values cl and c2")
xlabel('Real’)

ylabel('Imag")

axis([-3 1-22])

axis('square')

grid on

end

hold off

The root locus plot below is for the following values of damping:

cvec=[0.2.4.6.81.01.11.051.11.151.16];

Poles and Zeros of z11 for range of damping values ¢1 and c2

2 ! - —
Il ! Il
1 | * K
1 | ¥ 0O O J
18 ---—-—~~--~--~- O R
° | "o ‘
t *Q 1
b Lo FH' ,,,,,,
R
| I
05F—————__ :__*@,__1‘, _____ @?} ________
I
o | * | |
& 0F-- o R S
= (Y |
I I |
I I]
'05 _______ —1“{;@“—:’ _____ m __ |- — - - - -~
| | |
) A :A,,T _:v,,i*}w ,,,,,,,
| *a - :
ASF------ e o
: e
2 L ! .‘
-3 -2 -1 0 1
Real

Figure 2.14: Pole zero plot for z11 transfer function.

The plot starts out with damping values of zero for ¢l and c2. The poles and
zeros for zero damping are located on the imaginary axis. The poles are
located at 0, 0, £1j, *1.732j. The zeros are located at £0.62j and +1.62j.
As damping is increased from zero, the poles and zeros (except the two poles
at the origin) start moving to the left, away from the imaginary axis. The poles
and zeros move at different rates as damping is increased. The poles at *1j

Chapter 2 Transfer Function Analysis ' 47

and zeros at £0.62j move to the left less than the poles at £1.732j and the
zeros at t1.62j. In fact, the two poles at £1.732j move so much that at

damping values of 1.16 the poles intercept the real axis and split. One moves
to the left and the other to the right along the real axis.

Plotting pole and zero locations as a function of system parameters was
introduced in 1949 (Evans 1949), as the Evans root locus technique. The
hand plotting originally used has been largely replaced with computer plotting
techniques as shown above or by using the “rlocus” function. However,
because the ability to hand sketch root loci is such a powerful tool, it is still
taught in beginning control theory courses (Franklin 1994).

2.5.3.4 Undamped and Damped Model — tf and zpk Forms

This section is included to start familiarizing the reader with the various forms
of transfer functions available with MATLAB and to prepare for issues in the
next chapter.

Table 2.6 shows the transfer function form of the four distinct transfer
functions for the tdof model for the undamped (c1 = ¢2 = 0) and damped
(c1 = ¢2 = 0.1) cases run earlier. The numerator and denominator are both
arranged in polynomial form. Table 2.7 shows the zpk form, where the
numerator and denominator are both arranged as products of the zeros and
poles with a gain term multiplying the numerator.

Note that the denominators of all the undamped transfer functions are the
same, as are the denominators of all the damped transfer functions. However,
the numerators are all different because of the different number of poles and
zeros for each transfer function. For instance the z31 undamped transfer
function has no zeros, only a gain term of 1.0, while the z11 undamped
transfer function has two sets of complex zeros.

In going from the undamped to damped case, we showed that extra zeros
appeared in the z21 and z31 transfer functions. It is easier to see where the
extra zeros originate using the zpk form than using the tf form. Comparing the
undamped and damped numerators of the z31 zpk transfer function form
shows the extra (s+10)° term, from which the two real axis zeros arise. We

will use the zpk form of the transfer functions in the next chapter to calculate
frequency response at a specific frequency.

48 Vibration Simulation Using MATLAB and ANSYS

z11 Undamped Transfer function:

s +3s2+1

"6 +4 5™ + 3572

721 Undamped Transfer function:

s"6+45™+3s5°2

731 Undamped Transfer function:

s"6 +4 8™ + 3572

z22 Undamped Transfer function:

s™+2s2+1

s"6 +4 5™ + 3572

z11 Damped Transfer function:

s"4+03s3+301s2+02s+1

s76 + 0.4 5”5+ 4.03 "4+ 0.6s"3 +3s"2
721 Damped Transfer function:

0.1s"3+1.01s"2+02s+1

s +0.4s"5+4.03 s +0.65"3+35°2
z31 Damped Transfer function:

001s"2+02s+1

$*6+0.4s"5+4.03 5" + 0.6 s"3 + 352
z22 Damped Transfer function:

s"4+02s"3+201s2+02s+1

s"6+0.45"5+4.035" +0.6s"3 +35"2

Table 2.5: Transfer function (tf) form of undamped and damped tdof transfer functions.

z11 Undamped Zero/pole/gain:

(572 + 0.382) ("2 + 2.618)

§72 (s"2+ 1) (s"2 + 3)
z21 Undamped Zero/pole/gain:
(s"2+1)
2 (824 1) (2 +3)
z31 Undamped Zero/pole/gain:
2 (2 + 1) (22 +3)
222 Undamped Zero/pole/gain:

("2 + 12

$"2 (72 + 1) (s"2+3)

z11 Damped Zero/pole/gain:

(s"2 + 0.0382s + 0.382) (s"2 + 0.2618s + 2.618)

§"2(s"2+0.1s+ 1) (s"2+ 035+ 3)
221 Damped Zero/pole/gain:

0.1 (s+10) (s*2 + 0.1s + 1)

§"2(s"2+0.1s+ 1) (s"2+0.35 +3)
z31 Damped Zero/pole/gain:

0.01 (s+10)°2

§"2(s"2+0.1s+ 1) (s"2+ 0.35 +3)
z22 Damped Zero/pole/gain:

("2 +0.1s+ 12

$72 (2 + 0.1s + 1) (s"2 + 0.35 + 3)

Table 2.6: Zero/Pole/Gain (zpk) for undamped and damped tdof transfer functions.

Chapter 2 Transfer Function Analysis 49

Problems

Figure P2.1: four dof system.

P2.1 Derive the global stiffness and mass matrices for the four dof system in
Figure P2.1.

> Z, —>F, >z, — F,
ky k,
A — - —]
m, m,
[[
OO _* O«

Figure P2.2: two dof problem.

P22 Derive the equations of motion in matrix form for the two dof model in
Figure P2.2. Check for signs of diagonal terms and symmetry of off-diagonal
terms.

P2.3 Solve for the four transfer functions for the two dof problem and define
the 2x2 transfer function matrix. Are the denominators of all four transfer
functions the same? How many unique transfer functions are there for this
problem?

P2.4 Set m;=m, =m=1, k, =k, =k =1 and ¢, =c, =0 and solve for the
eigenvalues for the system. Solve for the zeros of the system and use the form

50 Vibration Simulation Using MATLAB and ANSYS

shown in (2.84) to summarize the poles and zeros. Hand sketch the poles and
zeros in the s-plane.

P25 (MATLAB) Set m;=m,=m=1, k, =k,=k=1. Modify the
tdofpz3x3.m file to plot the poles and zeros of the undamped two dof system.
Identify the poles and zeros in the MATLAB output listing and compare with
the hand-calculated values.

P2.6 (MATLAB) Set m; =m, =m=1, k, =k, =k =1, add damping values
of ¢, =c, =0.1 and plot the poles and zeros in the s-plane. List the poles and

zeros from MATLAB and correlate the listed values with the plots. Are there
any real axis zeros? How do the real axis zero(s) change with different values
of ¢, and c,, where ¢, =c,.

53

CHAPTER 3

FREQUENCY RESPONSE ANALYSIS

3.1 Introduction

In Chapter 2 we calculated the transfer functions and identified the poles and
zeros for the undamped system, which are repeated as (3.1) and (3.2) below,
respectively. The next step in understanding the system is to plot the
frequency domain behavior of each transfer function. Frequency domain
behavior means identifying the magnitude and phase characteristics of each
transfer function, showing how they change as the frequency of the forcing
function is varied over a frequency range. Each transfer function is evaluated
in the frequency domain by evaluating it at s = jw, where ® is the frequency

of the forcing function, radians/sec.

-
z, | =
[23
[(m?s* + 3mks? +k?) (mks® +k?) G
(mks® +k?) (m’s* + 2mks” + k%) (mks® +k%) F
i 'S (mks® +k?) (m’s* +3mks?® + k%) E,
s* (m’s* + 4m’ks” +3mk’) F,
(3.1)
(£0.62,%1.62) tj - none
j *j1)) j
none 1j (£0.62,£1.62)
(3.2)

(104)(+1,%1.732);

Instead of going directly into MATLAB to calculate and plot the frequency
responses, we will first sketch them by hand, using information about the low
and high frequency asymptotes and the locations of the poles and zeros. We
will discuss how to find the gain and phase of a transfer function at a given
frequency graphically using the locations of the poles and zeros in the
complex plane and then use MATLAB to plot. Finally, mode shapes are
defined, then calculated using transfer function information and plotted.

52 Vibration Simulation Using MATLAB and ANSYS

3.2 Low and High Frequency Asymptotic Behavior

It is always good to check either a system’s rigid body or spring-like low
frequency nature by hand. For this tdof system at very low frequencies there
are no spring connections to ground so the system moves as a rigid body, no
matter where the force is applied, to Fy, F», or F3.

Figure 3.1: Rigid body mode of vibration.

The rigid body equation of motion (where z is the motion of all three masses
together) is:

1 o (3.3a,b)

Now we can solve for the frequency domain behavior of the system by
substituting jo fors.

At a radian frequency of 0.1 rad/sec, a frequency taken to be an order of
magnitude less than the lowest resonant frequency of 1 rad/sec, the transfer
function is:

1o 1
3m(jo)’ 3m[j(0.1)]

z
F

Ll S0 B33 g
3m(.01) 3m m

Chapter 3 Frequency Response Analysis 53

Converting from vector (real/imaginary) form to magnitude/phase (polar) form
and using the definition of db as follows:

db=20*log,,(z/ F) , (3.5)
YA
. ‘F‘ =333, or 30.45db
(3.6a,b)
zZ - _180°
F

These results show that at a frequency of 0.1 rad/sec, the magnitude of the
motion of the masses is 33.3*F and the motion is —180° out of phase with the
force input.

We will now look at each individual transfer function, checking asymptotic
behavior at both low and high frequencies. To do this, the four transfer
functions are divided by the mass terms to give coefficients that are

proportional to @’ =k/m:

Starting with the z, /F, transfer function:

z, m’s* +3mks’® +k’
T 2 3.d T 2 G
E s°(m’s” +4m°ks” +3mk"~) ,

Dividing numerator and denominator by m’® allows redefining the equation in
terms of o, :

2

1[4 3ks? kz]
—|s"+ +—
m

zZ| _ m m) s'+3eis’+o)
K 2[o, 4ks® 3k2] ms’ (s* +40]s” + 30) (3.8)
m m

—Z—m3

Substituting s = jwand looking at low and high frequency behaviors:

54 Vibration Simulation Using MATLAB and ANSYS

7| (0 +302 (-0) +a}) o 1

F| m(-0')(o'-40ie* +30)) -mo’(30]) 3me’® (3.9)

<< O,

At low frequencies, the rigid body motion of z, is falling off at a (~1/®°)
rate, and with a gain of (1/3m). A rate of (~1/®’) means that every decade

of frequency shift, the amplitude drops by a factor of 100. Since a factor of
100 is —40db, we should see the low frequency amplitude change
40db/decade.

z| - -1
E| mo’(w') mo’ (3.10)
W>> 0, o

At high frequencies, the rigid body motion of z, is again falling at a (=1/ @)
rate, but the gain is only (1/m) instead of (1/3m). This is because at high
frequencies z, moves more as a result of F ; the other two masses do not want
to move, as will be seen from the high frequency asymptotes of the z, /F, and

z, /F, transfer functions.

Checking % :
F

1

z, m m ~ (wis’ +@})
- 2 2\ T .2 4 2.2 4
1 & (S4+4ks +%J s m(s +4w:s +30)n) @3.11)
m m
+m3
z, -0}’ + o)
F| -me' (o -40l0 +30;)

0<< O,

Chapter 3 Frequency Response Analysis

z,| _ —o’'o; _ - (o) @ _ k
F| -mo’(of 40l +30)) -mo’lo’') meo' o'm’
0>> 0,

At low frequencies, z, looks exactly like z;. But at high frequencies, z, is

dropping off ata (1/*) rate, or 80db/decade, with a gain of (k/m?).

Checking 5 now:
1

k2

L Y
i — m _ ®,
F, 4ks® 3k? ms? (s* +4als’ + 3w’

! 52 S4 + + — (n n)

m m
+m3
z,| o N o, -1

- - 2

F| -mo (o -4 +30)) -mo’(30)) 3me
0<< O,
z,| o, ey (k)1
F| -me ((o“) -me® | m’ o’
0>>m,

(3.14)

(3.15)

(3.16)

At low frequencies, z; looks exactly like z; and z,, but at high frequencies z; is

dropping ata (1/®°) rate, or 120db/decade, with a gain of (~k*/m’).

Checking 4,
F

2

56 Vibration Simulation Using MATLAB and ANSYS

m’s* 2mks’ k*
z, m’ m m (s* +20s* + o))
E| (. 4m’%ks’® 3mk?) ms (s4 +4wls’ +30)3) (3.17)
sT[s + m3 m3
+m3 v
2, (0 +20] (-0*) +}) @
E| -mo (o'-40l0’+30)) -me’(3e)) 3me’ (3.18)
0 <<,
z|_ o -l
E| -mo (o) me’ (3.19)
0>> o,

At low frequencies, z, /F, looks exactly like z, /F,, z,/F, and z,/F,. Butat
high frequencies z, /F, is dropping at a (—1/®") rate and has a higher gain of
(1/m) instead of (1/3m). Thus, the low and high frequency asymptotes look
exactly like z, /F,.

Summarizing the low and high frequency asymptotes, and solving for the gains
and phases at ® = 0.1 rad/sec and ® = 10rad/sec.

% =3‘12= 1. ‘11 =_1300=—33=30.46db,180°
| 3me’ 3m(0.1)° 3(0D) (3.20)
0=0124
s€C
_;L e S =%=—.01=—40db,180"
1| mo (10) (3.21)
w=10"

Chapter 3 Frequency Response Analysis : 57

ZZ ’1 o

220 = =30.46db, 180

E | 3me (3.22)
w=0.1

22 k 1 o

2] - = = 0.0001=-80db, O

F ne’ (10)4 3.23)
®=10

- =1 _30.46db,180°

F | mer - A0 | (3.24)
0=0.1

KLl s 120, 180°

F| m o I¢° ’ (3.25)
®w=10

Z = =1 _3046db, 180°

R | S 04040, | (3.26)
w=0.1

22 -1 -1 o '

L) - =———=—01=-40db,180 k

F2 m(o2 (10)2 (3.27)
w=10

3.3 Hand Sketching Frequency Responses

Knowing the pole and zero locations and the asymptotes, the complete
frequency response can be sketched by hand, as shown in Figure 3.2. We will
not worry about the exact magnitudes at the poles and zeros, but will use the
hand sketch to get an idea of the overall shape and characteristics of the
frequency response. Start by drawing the low and high frequency asymptotes,
straight lines with appropriate magnitudes and slopes starting at the 0.1 and 10
rad/sec frequencies. Next, locate the poles and zeros at some distance above
and below the asymptote line at the appropriate frequency and start
“connecting the dots.” Start at the low frequency asymptote and follow it to
the first zero or pole encountered. Keep plotting, moving to the next higher
frequency pole or zero until all the poles/zeros are passed and move onto the
high frequency asymptote. Note that for z21 the pole and zero at 1 rad/sec
cancel as do one of the zeros and the pole for z22. Note that z31 has no zeros,

58 Vibration Simulation Using MATLAB and ANSYS

only poles. Compare these plots to the MATLAB generated plots in Figure
3.5. Chapter 4 will give a physical interpretation of the zeros.

xfer function form, Bode 211, Z33 db magnitude xfer function form Bode 221, 12, 223, Z32 db magnitude
50 T T 5 T T T
[(AT Pl E b [T
30.46 db 11 ot nﬁﬁ\iﬁﬂ#‘} (NEN ﬂ\ [T
(W] orenn kN{ [T
L [N L Ll
I g [ERE
8 ! \# 8 [T
A T4l | A [NR
[H-40db o
[BRaN i
= c
=3 [RRN &
g R g
RN
[kl
(Y
(R
i
L2yl
10’

xfer function form, Bode 231, 13 db magnitude

5 — T T T T T
3046 | 40 dbfdec ' xxlum Lo 3046 db
Y P Y
i E R
ok - L - _LLu
R L i
g R R s ; I
. [L > | |
8 RN | 8 | I
% i e o B il e % TN i T
3 [| S o R
g | | g o doplemcd
o | Lo RN
A0 - -+ =1 + 1 - B e e e e e R el e e o e e Il
[1 RN R NREY
R | \w“yu:\4mm o RN EET
R [N o RN
150 L R 150 L R
10’ 10 10' 10 10° 10’
frequency, radisec frequency, radisec

Figure 3.2: Hand sketch of frequency responses using asymptotes and pole/zero locations.
3.4 Interpreting Frequency Response Graphically in Complex Plane

There are many ways to plot frequency responses using MATLAB, as shown
in the MATLAB code tdofxfer.m in the next section. One method of
visualizing graphically what happens in calculating a frequency response is
shown below.

In Chapter 2 we defined the four unique transfer functions in both “transfer
function” and “zpk” forms. We will use the zpk form to graphically compute
the frequency response.

Start by defining a specific frequency for which to calculate the magnitude and
phase. Then locate that frequency on the positive imaginary axis.

Chapter 3 Frequency Response Analysis 59

The gain and phase of the numerator term of a transfer function is the vector
product of distances from all the zeros to the frequency of interest times the dc
gain. Consider an undamped model, where all the poles and zeros lie on the
imaginary axis. If the frequency happens to lie on a zero, that distance is zero,
which multiplies all the other zero distances, resulting in a frequency response
magnitude of zero. For a damped model the distance will not be zero, as the
zeros are to the left of the imaginary axis, but the distance will be small, giving
a small multiplier at that frequency and attenuating the response.

The gain and phase of the denominator term is the product of distances from
all the poles to the frequency of interest. For an undamped model, if the
frequency happens to lie on a pole, that distance is zero, which multiplies all
the other pole distances. When the numerator is divided by the zero
denominator value, the response goes to e . For a damped model the distance
will not be zero as the poles are to the left of the imaginary axis; the distance
will be small, however, giving a small multiplier at that frequency and
amplifying the response.

Once the numerator and denominator are known, a vector division will give
the transfer function.

The pole/zero plot, pole/zero values and zpk form for the z11 transfer function
are shown below. We will calculate the frequency response for 0.25 rad/sec,

where the frequency is indicated in Figure 3.3.

Poles and Zeros of z11

g oob-oooqo---- AEREEEELEEEEEE
- | | |
05 1 I |
,,,,,, B T E gy —
1 ¢ |
1 |
ir----- t-- - -~ ==
' | t
' | |
A5 - - - - - 4———-<»([ffffff - ==
1 |
. * |
-2 1 L L
-2 -1 0 1 2

Figure 3.3: Interpreting the frequency response graphically for a frequency of 0.25 rad/sec
(tdofpz3x3.m).

60 Vibration Simulation Using MATLAB and ANSYS

poles =

0
0
0+ 1.7321
0-1.7321i
0+ 1.0000i
0 - 1.0000i

zeros_z11 =

0+ 1.6180i
0-1.6180i
0+ 0.61801
0-0.61801

Table 3.1: Poles and zeros of z11 transfer function, MATLAB listing from tdofpz3x3.m.

z11 Undamped Zero/pole/gain:

("2 +0.382) (52 + 2.618)

$2 ("2 + 1) ("2 +3)

Table 3.2: zpk form of z11 transfer function, MATLAB listing from tdofpz3x3.m.

Taking the expression for z11 from the zpk MATLAB listing in Table 3.2,
expand the terms to show explicitly the pole and zero values from Table 3.1,
substituting s=0.25j to calculate the frequency response value at 0.25 rad/sec.

(s> +0.382)(s? +2.618)
s2(s* +1)(s* +3)
_ (s+0.618))(s—0.618})(s+1.618))(s—1.618})
T S G+ -1 +1.732j)(s~1.732)) 3.28)
_ (0.25j+0.618))(0.25]—0.618})(0.25j+1.6181)(0.25j—1.6183)
T (0.25))%(0.255+1§)(0.25j-1j)(0.25]+1.732j)(0.25j - 1.732j)
~0.816

= =-474
0.172

zl1=

Chapter 3 Frequency Response Analysis - 61

Taking the magnitude and phase of z11:

|z11] = 4.74
Zz11 = —180°

(3.29)

The frequeney response plot from MATLAB code tdofxfer.m in Figure 3.4
shows a magnitude of 4.79 (our 4.74 above differs because of rounding
errors). The phase plot, not shown here but available by running tdofxfer.m,

shows —180°.

Polynomial Form, for loop z11, 233 magnitude
I e I e

ImEARIE

[N
vt

§ ***** ~
2,0 |
‘510 Ez==s=3:-9 \so2g=zizef Ei=2
© = = |
€ r [Sl oo w o
~~~~~ [t o e 1 s i Bt i Bl el b
————— - = +,—f7\—+—4—+4—1—‘r\—
B [ | N
10 = .
EZ|l 0.25rad/sec £
F-| gain=4.79
10’ 1 0 4
10 10 10

frequency, rad/sec
Figure 3.4: z11 frequency response highlighting magnitude at 0.25 rad/sec.
3.5 MATLAB Code tdofxfer.m — Plot Frequency Responses
3.5.1 Code Description

Five different methods of calculating the frequency responses are used in the
tdofxfer.m code, starting with the simplest and most straightforward method,
but not necessarily the most efficient, then going to more sophisticated and
efficient methods. The methods are:

1) Polynomial descriptions of the transfer functions: Using a
for-loop to cycle through the frequency vector. MATLAB’s
complex algebra capabilities are used to evaluate the
frequency response at each frequency.

2) Polynomial descriptions of the transfer functions: Using
MATLAB’s vector capabilities instead of a for-loop to



62  Vibration Simulation Using MATLAB and ANSY'S

calculate the frequency response at the frequencies in the
frequency vector.

3) MATLAB’s “transfer function” representations of the transfer
functions: MATLAB’s automatic bode plotting capability is
used, where MATLAB chooses the frequency range to use
and automatically plots results.

4) Transfer function representations of the transfer functions:
MATLAB’s bode plotting capability is used, but this time
defining outputs and frequency range with the “bode”
command, controlling the output for later plotting.

5) MATLAB?’s “zero/pole/gain, zpk™ form of the input is used.

Because the plotting commands are so lengthy, they will be not be listed. See
the downloaded code for the complete code listing.

3.5.2 Polynomial Form, For-Loop Calculation, Code Listing

The “polynomial form” shown below uses (2.28) through (2.36) to define the
four distinct frequency responses of the system, allowing the user to specify
any values of masses, dampers and springs. MATLAB’s complex number
calculation capabilities are used by defining a vector of radian frequencies “w”
and substituting “j*w” for “s.” A “for-loop” is then used to cycle through each
frequency in the “w” vector and calculate the complex value for the frequency
response at that frequency. Because MATLAB does not know how large all
of the vectors defined within the “for-loop” are going to be, it resizes each
vector during each calculation, a very time-consuming (relatively speaking)
operation. We could speed up the operation by defining null vectors of the
proper size for each of the “for-loop” variables before the for-loop was
entered. This would still require going through the for-loop for every entry in
the “w” wvector, but would eliminate having to resize the vectors at each
calculation. Following the for-loop, magnitudes and phases are calculated
using MATLAB’s “abs” and “angle” commands and are available for plotting.

% "Polynomial Form, for-loop" frequency response plotting
% assign values for masses, damping, and stiffnesses

ml=1;
m2=1;
m3=1;
cl=0;
c2=0;
kl=1;
k2=1;




Chapter 3  Frequency Response Analysis

%
%
%

%

%
%

%

%

%

Define a vector of frequencies to use, radians/sec. The logspace command uses
the logl0 value as limits, i.e. -1 is 10~-1 = 0.1 rad/sec, and 1 is

10”1 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,200);

pre-calculate the radians to degree conversion

rad2deg = 180/pi;

Use a for-loop to cycle through all the frequencies, using MATLAB's
complex algebra capabilities to evaluate.

for cnt = 1:length(w)
define s as the imaginary operator times each frequency

s = j*w(cnt);
define the frequency responses to be evaluated
den(cnt) = " 2*(s"4*(m1*m2*m3) + s"3*(m2*m3*cl + m1*m3*cl + m1*m2*c2
+ml*m3*c2) + s"2*(m1*m3*kl + m1*m3*k2 + m1*m2*k2 ...
+m2*cl*c2 + m3*cl*c2 + mi*cl*c2 + k1*m2*m3) ...
+ s*(m3*cl*k2 + m2*c2*kl + mi*c2*kl + ml*c1*k2 ...
+m3*c2*kl + m2*c1*k2) + (m1*k1*k2 + m2*k1*k2 + m3*k1*k2));
z1 1bf(ent) = (Mm2*m3)*s*4 + (m3*cl + m3*c2 + m2*c2)*s"3 ...
+ (cl*c2 + m2*k2 + m3*kl + m3*k2)*s™2 ...
+ (c1*k2 + c2*k1)*s + (k1*k2))/den(cnt);

z21bf(cnt) = ((m3*c1)*s*3 + (c1*c2 + m3*k1)*s"2 + (c1*k2 + c2*k1)*s ...
+ (k1*k2))/den(cnt);

231bf(ent) = ((c1*c2)*s*2 + (c1*k2 + c2*k1)*s + (k1*k2))/den(cnt);

z22bf(cnt) = ((m1*m3)*s™4 + (m1*c2 + m3*c1)*s"3 + (m1*k2 + cl*c2 + ...
m3*k1)*s"2

+ (c1*k2 + c2¥k1)*s + (k1*k2))/den(cnt);

calculate the magnitude and phase of each frequency response

z1 1bfmag(cnt) = abs(z1 1 bf(cnt));

z2 1bfmag(cnt) = abs(z2 1 bf(cnt));

z31bfmag(cnt) = abs(z3 1 bf(cnt));

222bfmag(cnt) = abs(z22bf{cnt));

z11bfphs(cnt) = angle(z1 1bf(cnt))*rad2deg;

z21bfphs(cnt) = angle(z2 1bf(cnt))*rad2deg;




64  Vibration Simulation Using MATLAB and ANSY'S

z31bfphs(cnt) = angle(z3 1 bf(cnt))*rad2deg;
z22bfphs(cnt) = angle(z22bf(cnt))*rad2deg;

end % end of for-loop

3.5.3 Polynomial Form, Vector Calculation, Code Listing

This section of code defines the transfer functions as in the previous section
but instead of using the for-loop for obtaining complex values of the desired
quantities at each frequency, this code uses MATLAB’s vector calculation
capability. MATLAB can perform operations on vectors directly, very
quickly and without having to resize anything as discussed in the previous
section. In order to define a vector operation between two vectors, precede
the operation symbol (*, /, /, etc) with a period (“.”). This period tells
MATLAB to perform an element-by-element operation on or between
corresponding elements of the vector(s). For example, to square every
element of a vector, “vec”, use the command “vec.”2,” and to multiply two
elements, ‘“vecl” and “vec2” element by element, use the command
“vecl.*vec2.” This vector calculation capability will be used wherever
appropriate in the balance of the code in the text.

% "Polynomial Form, Vector" method - using MATLAB's vector capabilities instead
% of the "for" loop.
% assign values for masses, damping, and stiffnesses

ml=1;

m2=1;

m3=1;

cl=0;

c2=0;

kl=1;

k2=1;
% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the logl0 value as limits, i.e. -1 is 107-1 = 0.1 rad/sec, and 1 is
% 1071 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,200);
% pre-calculate the radians to degree conversion
rad2deg = 180/pi;
% define s as the imaginary operator times the radian frequency vector

s =j*w;




Chapter 3  Frequency Response Analysis 65

% define the frequency responses to be evaluated, using the "." prefix
% in front of each operator to indicate that each
% define the frequency responses to be evaluated

den = .2 *(s.M*(m1*m2*m3) + s.23*(m2*m3*cl + mI*m3*cl + m1*m2*c2
+ml*m3*c2) + s.”2*(m1*m3*kl + m1*m3*k2 + m1*m2*k2 ...

+m2*cl*c2 + m3*cl*c2 + ml*cl*¢2 + k1*m2*m3) ...

+s*m3*c1*k2 + m2*c2*k1 + m1*c2*k1 + ml*c1*k2 ...

+m3*c2*k1 + m2*c1*k2) + (m1*k1*k2 + m2*k1*k2 + m3*k1*k2));

z11bfv = (m2*m3)*s.A4 + (m3*cl + m3*c2 + m2*c2)*s."3 ...

+(c1*c2 + m2*k2 + m3*k1 + m3*k2)*s. A2 ...

+ (c1*k2 + c2*k1)*s + (k1*k2))./den;

221bfv = ((m3*c1)*s."3 + (c1*c2 + m3*k1)*s. 2 + (c1*k2 + c2*k1)*s ...
+ (k1*k2))./den;

231bfv = ((c1*c2)*s.A2 + (c1*Kk2 + c2*k 1)*s + (k1*k2))./den;

222bfv = (m1*m3)*s. A4 + (m1*c2 + m3*c1)*s.A3 + (m1*k2 + c1*c2 + m3*k1)*s.”2
+ (c1*k2 + ¢2*%k1)*s + (k1*k2))./den;

% calculate the magnitude and phase of each frequency response
z1 1bfvmag = abs(zl 1bfv);
z21bfvmag = abs(z21bfv);
z31bfvmag = abs(z31bfv);
z22bfvmag = abs(z22bfv);
z1 1bfvphs = angle(zl 1bfv)*rad2deg;
z21bfvphs = angle(z2 1 bfv)*rad2deg;
23 1bfvphs = angle(z31bfv)*rad2deg;

722bfvphs = angle(z22bfv)*rad2deg;

3.5.4 Transfer Function Form — Bode Calculation, Code Listing

This section uses MATLAB’s automatic “bode” calculation and plotting
capability, as well as the “transfer function” form of input, where the
numerator “num” and denominator “den” of each transfer function are input as
row vectors in coefficients of descending powers of “s.” Using the “bode”
command with no left-hand arguments results in MATLAB choosing the
frequency range to use and automatically generating plots of magnitude and
phase.




66

Vibration Simulation Using MATLAB and ANSYS

%
%

%

%

%
%

using MATLAB's automatic "bode" plotting capability, defining the transfer
functions in "transfer function" form by row vectors of coefficients of "s"

assign values for masses, damping, and stiffnesses

ml=1;
m2=1;
m3=1;
cl=0;
c2=0;
kl=1;
k2=1,;

1 4

define row vectors of numerator and denominator coefficients

den = [(m1*m2*m3) (m2*m3*c]l + mI*m3*cl + m1*m2*c2 + m1*m3*c2) ...
(m1*m3*kl + m1*m3*k2 + m1*m2*k2 + m2*cl*c2 + m3*cl*c2 + ...
ml*cl*¢2 + ki*m2*m3) ...
(m3*c1*k2 + m2*¢2*k1 + m1*c2*kl + m1*c1*k2 + m3*c2*kl + m2*c1*k2) ...
(m1*k1*k2 + m2*k1*k2 + m3*k1*k2) 0 0];

z1lnum = [(m2*m3) (m3*cl + m3*c2 + m2*c2) (c1*c2 + m2*k2 + m3*kl + m3*k2)
(c1*k2 + c2*k1) (k1*k2)];

221num = [(m3*c1) (c1%c2 + m3*k1) (c1*k2 + c2¥k1) (k1 *k2)];
Z31num = [(c1*c2) (c1*k2 + c2*k1) (k1*k2)];

z22num = [(m1*m3) (m1*c2 + m3*cl) (m1*k2 + cl1*c2 + m3*kl) ...
(c1*k2 + c2*k1) (k1*k2)];

the bode command with no left hand side arguments automatically chooses
frequency limits and plots results

grid on
bode(z1 1num,den);

disp(‘execution paused to display figure, "enter" to continue'); pause
bode(z2 1num,den);
disp(‘execution paused to display figure, "enter" to continue'); pause
bode(z3 1num,den);
disp(‘execution paused to display figure, "enter" to continue'); pause
bode(z22num,den);

disp('execution paused to display figure, "enter” to continue'); pause




Chapter 3  Frequency Response Analysis 67

3.5.5 Transfer Function Form, Bode Calculation with Frequency,
Code Listing

This section also uses MATLAB’s “bode” plotting capability with the transfer
function form of the input but defines magnitude and phase vectors for output
and specifies the frequency vector to use. This code also calculates and plots
the low and high frequency asymptotes for the four unique transfer functions.

% using MATLAB's "bode" plotting capability, defining the transfer
% functions in "transfer function” form by row vectors of coefficients of
% "s"and defining output vectors for magnitude and phase as well as a
% defined range of radian frequencies
% assign values for masses, damping, and stiffnesses k

ml=1;

m2=1;

m3=1;

cl=0;

c2=0;

ki=1;

k2=1;
% define row vectors of numerator and denominator coefficients

den = [(m1*m2*m3) (m2*m3*cl + m1*m3*c1 + m1*m2*c2 + m1*m3*c2) ...
(m1*m3*kl + m1*m3*k2 + m1*m2*k2 + m2*cl*c2 + m3*cl*c2 + ...
ml*cl*c2 + k1*m2*m3) ...
(m3*c1*k2 + m2*c2*kl + m1*c2*kl + m1*c1*k2 + m3*c2*k1l + m2*c1*k2) ...
(m1*Kk1*k2 + m2*k1*k2 + m3*k1*k2) 0 0];

z11num = [(m2*m3) (m3*cl + m3*c2 + m2*c2) (c1*c2 + m2*k2 + m3*k1 + m3*k2)
(c1*k2 + c2*k1) (k1 *k2)];

221num = [(m3*c1) (c1*c2 + m3*k1) (c1*k2 + c2*k1) (k1*k2)];
Z31num = [(c1*c2) (c1*k2 + c2*k1) (k1*k2)];

z22num = [(m1*m3) (m1*c2 + m3*cl) (m1*k2 + c1*c2 + m3*k1) ...

(c1*k2 + c2*kl) (k1 *k2)];
% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10”-1 = 0.1 rad/sec, and 1 is
% 10~ = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,200);

% calculate the rigid-body motions for low and high frequency portions

% of all the frequency responses, the denominator entries are vectors with
% entries being coefficients of the "s" terms in the low and high frequency
% asymptotes, starting with the highest power of "s" and ending with the

% "0"th power of "s" or the constant term




68  Vibration Simulation Using MATLAB and ANSYS
zl1lnum_lo=[1];
zl1lden_lo=[3 00]; % -1/(3*w"2)
zl1lnum_hi=[1];
zllden_hj =[100]; % -1/(w"2)
z21num_lo = [1];
z21den_lo=[300]; % -1/(3*w"2)
z21num_hi = [1];
z21den_hi=[10000]; % -1/(3*w"4)
z31num_lo =[1];
z31den_lo=[3 0 0]; % -1/(3*w"2)
z31num_hi =[1};
z31den_hi=[1000000]; % -1/(w"2)
z22num _lo =[1];
z22den_lo=[3 0 0]; % -1/(3*w"2)
z22num_hi = [1];
z22den_hi=[100]; % -1/(w"2)

% define the "tf" models from "num, den" combinations

z11tf = tf(z1 Lnum,den);
221tf = tf(z2 1num,den);
z31tf = tf{(z3 Inum,den);
722tf = tf(z22num,den);
z11tf_lo =tf(z11num_lo,z11den_lo);
z11tf_hi = tf{z] lnum_hi,z11den_hi);
z21tf lo=tf(z21num _lo,z21den_lo);
Z21tf_hi = tf{(z21num_hi,z21den_hi);
z31tf lo=tf(z31num_lo,z31den_lo);

z31tf hi = tf(z3Inum_hi,z31den_hi);




Chapter 3  Frequency Response Analysis 69

%
%

%

222tf lo = tf(z22num_lo,z22den_lo);
z22tf hi = tf{z22num_hi,z22den_hi);

use the bode command with left hand magnitude and phase vector arguments
to provide values for further analysis/plotting

[z11mag,z1 1phs] = bode(z1 1tf,w);
[z21mag,z2 1 phs] = bode(z2 L tf,w);
[z31mag,z3 1phs] = bode(z3 1tf,w);
[z22mag,z22phs] = bode(z22tf,w);
[z11maglo,z11phslo] = bode(z1 1tf lo,w);
[z21maglo,z21phslo] = bode(z2 1tf lo,w);
[z31maglo,z31phslo] = bode(z3 1tf lo,w);
[222maglo,z22phslo] = bode(z22tf lo,w);
[z11maghi,z1 1phshi] = bode(z11tf_hi,w);
[z21maghi,z2 1phshi] = bode(z2 1tf hi,w);
[z31maghi,z31phshi] = bode(z3 1tf_hi,w);
[z22maghi,z22phshi] = bode(z22tf_hi,w);
calculate the magnitude in decibels, db

z1l Imagdb = 20*log10(z1 1mag);

z2 lmagdb = 20*log10(z2 1 mag);
z31magdb = 20*log10(z3 1mag);
z22magdb = 20*log10(z22mag);

z]1 1maglodb = 20*log10(z1 1maglo);
z2Imaglodb = 20*log10(z2 1maglo);

z3 1maglodb = 20*log10(z3 1maglo);
z22maglodb = 20*log10(z22maglo);

z]1 1maghidb = 20*log10(z1 1 maghi);
z21maghidb = 20*log10(z2 1 maghi);

z3 Imaghidb = 20*log10(z3 1maghi);




70  Vibration Simulation Using MATLAB and ANSYS

z22maghidb = 20*log1 0(z22maghi);

3.5.6 Zero/Pole/Gain Function Form, Bode Calculation with Frequency,
Code Listing

This section also uses MATLAB’s “bode” plotting capability. This time, with
the zero/pole/gain form of the input. It defines magnitude and phase vectors
for output and specifies the frequency vector to use.

% using MATLAB's "bode" plotting capability, defining the transfer
% functions in "zero/pole/gain” form by column vectors of poles and zeros
% and defining output vectors for magnitude and phase as well as a
% defined range of radian frequencies
% assign values for masses, damping, and stiffnesses
ml=1;
m2=1;
m3=1,
cl=0;
c2=0;
kl=1;
k2=1,;
m=ml;
k=kl;
% define column vectors of poles and zeros from previous derivation
%
% there are three ways to make a column vector:
%
Y% 1) define a row vector and then transpose it:
%
% p =[0 0 1*j -1*j sqrt(3*k/m)*j -sqrt(3*k/m)*j]';
Y%
% 2) define a column vector by using semi-colons between elements:
%
% p=10; 0; 1*j; -1%j; sqrt(3*k/m)*j; -sqrt(3*k/m)*j];
%
% 3) define a column vector directly:
%
% r=I[ 0
% 0
% 1%
% -1%§
% sqrt(3*k/m)*j
% -sqri(3*k/m)*j 1;
% zeros for z1/f1; quartic so four zeros

z11_1 = -sqrt((-3*k-sqrt(5)*k)/(2*m));




Chapter 3  Frequency Response Analysis

71

%

%

%

%

%

%
%
%

%
%

z11_2 = sqrt((-3*k-sqrt(5)*k)/(2*m));

Z11_3 = -sqrt((-3*k+sqrt(5)*k)/(2*m));
211_4 = sqrt((-3*k-+sqrt(5)*K)/(2*m));

zeros for z2/f1; quadratic so two zeros

721 1= -sqrt(-k/m);
721 2 = sqrt(-k/m);

zeros for z3/f1; no zeros, so use empty brackets
z31_1=[];
zeros for z2/f2: quadratic so two zeros

7221 = -sqrt(-k/m});
722 2 = sqrt(-k/m);

z11=[z11_1zll 2zI1 3 z11 4]} h

721 =[221_1 z21_2],

z31 =231 _1;

722 =[722_ 1222 2],

p=1[00 1%j -1%j sqrt(3*k/m)*j -sqre(3*k/m)*j]';

gain = 1;

use the zpk command to define the four pole/zero/gain systems
sysl 1pz = zpk(zl 1,p,gain);

sys21pz = zpk(z21,p,gain);

sys31pz = zpk(z31,p,gain);

sys22pz = zpk(z22,p,gain);

Define a vector of frequencies to use, radians/sec. The logspace command uses

the log10 value as limits, i.e. -1 is 10~-1 = 0.1 rad/sec, and 1 is
1071 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,200);

use the bode command with left hand magnitude and phase vector arguments
to provide values for further analysis/plotting

[z11mag,z11phs] = bode(sys1 1 pz,w);

[z21mag,z21phs] = bode(sys2 1 pz,w);




72

Vibration Simulation Using MATLAB and ANSYS

%

[z31mag,z3 1 phs] = bode(sys3 1 pz,w);

[z22mag,z22phs] = bode(sys22pz,w);

calculate the magnitude in decibels, db

z1 1magdb = 20*log10(z1 1mag);

z21magdb'= 20*log10(z21 mag);

z31magdb = 20*log10(z3 1mag);

z22magdb = 20*log10(z22mag);

3.5.7 Code Output — Frequency Response Magnitude and Phase Plots

| [ i | [
‘\ R o
: 1 Lo
] 1.1 U LLLun
OF-- 1 RN . INERE
8 I SRR
e [ |
N ERIT RN
}:’ '50***‘*7*\*\*“7?1"’r*rTTr:\%
€ Lo RN
S
@ RN NN
E Lo o
A00F ~ ~ - 4 -im HH -t et
o o
[N o rnn
RN [N
150 L L
10" 10° 10'
frequency, rad/sec
xfer function form, Bode 231, z13 db magnitude
N R
[ T\FN\ " 1
BRE K‘\\J 1
Lo A LL
0 RN [
8 NN I
5 RN I
9 o
2 50“’?7777ﬂﬂ"‘
5 [ AN
© [ NERTH
E 100 [N I RRTH
“00F - - S —1—l A - -
I [
NN
NN
_150 L L L1l
10" 10

frequency, rad/sec

magnitude, db

magnitude, db

xfer function form, Bode z11, 233 db magnitude xfer function form, Bode 221, z12, 223, z32 db
5

magnitude

l\\\\\il

frequency, rad/sec

xfer function form, Bode 222 db magnitude

-100

frequency, rad/sec

Figure 3.5: Magnitude versus frequency for four distinct frequency responses, including
low and high frequency asymptetes.




Chapter 3  Frequency Response Analysis 73

xfer function form, Bode z11, z33 phase
A0 ———— T T
| ot 1 [ N AN

O
_200;,_L_4,,1u,,{
| [

1

]
!
250 — - - — 1 _
|
|
|
|
!
|

phase, deg

|

|
B
i |

300 - —-Lwi-

i
b
|

380k -~ -~ -
I
I

-400

frequency, rad/sec

xfer function form, Bode z31, z13 phase
-150

-200

-250

-300

phase, deg

-350

frequency, rad/sec

xfer function form, Bode z21, z12, 223, z32 phase
-150 --— T

| [ N R

T T
[N
[

t
-200 o aau
e
IR
Lo
8 250 T
N IR
o RN
8 300 11y
o L
INEENN
350 IRRIR
B T n
o
b
~4001 o L—‘—‘—U—UJ-1
10 10 10

frequency, rad/sec

xfer function form, Bode 222 phase

-150 [N ERTE T T 7000l
Lot R
[ T T Tt

200k — - I lelml - — b 4 s e
Lo [ RN
[N E R o
[N R

§-250--—v BRI N A A e B A RN

- ok [N

> RN EEY [N RNT
5 300 - -k —i— i - L Y
S [T o
P o
o o

B50F - - - - TiITE S T T
(IR [ E R
Lo [

_4001 Ll Humo |4L\u|u1

10 10 10

frequency, rad/sec

Figure 3.6: Phase versus frequency for four distinct frequency responses, including low
and high frequency asymptotes.

3.6 Other Forms of Frequency Response Plots

Other forms of frequency response plots are shown for a damping value of 2%

of critical damping for each mode.

The code used for the plots is from

Chapter 11, tdofss_modal_xfer_modes.m.



74 Vibration Simulation Using MATLAB and ANSY'S

3.6.1 Log Magnitude versus Log Frequency

z11, 33 log mag versus log freq

e

magnitude

80
" P

|

|

3

]

4

1
R EUY [ —

I
44~__J/ -

o \ T

| | | :

50 - — — — 14

g 50 | 1 [N

° i 1 [

@ -100- — — — — R e T

& ' 1 [

5 i 1 [
A0 - -~ -5 --5-— -7/ rrFr

frequency, rad/sec

Figure 3.7: Log magnitude versus log frequency.

Comments on the log-log plot:

1) The asymptotic behavior at the low and high frequency ends
are clear by checking the slopes.

2) The log frequency scale spreads out the resonances, which
otherwise would tend to clump at the iower end of the scale.

3) The log amplitude scale allows reading the gain directly
without converting from db.

4) Adding the gain from the mechanics to the gain of the
frequency response of the control system allows for
definition of the overall series (multiplicative) frequency
response.



Chapter 3  Frequency Response Analysis 75

3.6.2 db Magnitude versus Log Frequency

z11, z33 db mag versus log freq

magnitude, db

phase, deg

-200
-1

frequency, rad/sec

Figure 3.8: db magnitude versus log frequency.

Comments on the db-log plot:

1) The asymptotic behaviors at the low and high frequency
ends are clear by checking the slopes, i.e.

(1/w) = ~20 db/decade, (1/ 0 ) = —40 db/decade.

2) The log frequency scale spreads out the resonances, which
otherwise would tend to clump at the lower end of the scale.

3) The db amplitude scale makes it necessary to convert to gain
if needed.

4) The product of two individual frequency response gains can
be found by adding their gains directly on the log scale.



76  Vibration Simulation Using MATLAB and ANSYS

3.6.3 db Magnitude versus Linear Frequency

z11, 233 db mag versus linear freq

magnitude, db

frequency, rad/sec

Figure 3.9: db magnitude versus linear frequency.

Comments on the db-linear plot:

1) The asymptotic behaviors at the low and high frequency

2)

3)

ends are not clear.

The linear frequency scale tends to clump the resonances at
the lower end of the scale, although the scale could be
shortened since nothing significant is happening at the high
end.

The db amplitude scale makes it necessary to convert to
linear gain if specific gain values are needed.



Chapter 3

Frequency Response Analysis 77

3.6.4 Linear Magnitude versus Linear Frequency

211, z33 finear mag versus linear freq

40 T T T T \ \ T T
| 1 i | | | 1 I |
30H - - 0 - - L oL o4 _do_.L__
° I | i ] | I | i I
E] i I I | | I 1 1 |
R I B T L T e
2 1 ' ! [ i | ' ' !
£ | i | ' ' | | ! |
|
|
1

%
-

phase, deg

frequency, rad/sec

Figure 3.10: Linear magnitude versus linear frequency.

Comments on the linear-linear plot:

1))

2

3)

4)

The asymptotic behaviors at the low and high frequency
ends are not clear.

The linear frequency scale tends to clump the resonances at
the lower end of the scale, although the scale could be
shortened since nothing significant is happening at the high
end.

The linecar amplitude scale enables reading gain values
directly, but reading values for small gain values is difficult.

It is useful for directly adding the individual mode
contributions of a frequency response to provide the overall
response, shown in Chapter 8, Sections 8.7 and 8.8.



78  Vibration Simulation Using MATLAB and ANSY'S

3.6.5 Real and Imaginary Magnitudes versus Log and Linear Frequency

z11, z33 linear real mag versus fog freq

20 T L B B \ T T T T
[ | [ R
® o | Vo
s i N Ly
E | i [ T B A
4 | b [ R B
£ | | [ B R
5 ) T T
e i [
i [
i

1

10
0{ T T T T T T TT1T
3 1 | i [ | | [
= 1 | [ | | I N I
g, 1 [ N T t [ T R S A
& I | [ I | [

; B e e e B L e B R LR B
| I i [ R T B B
2 | I [ } [ R T T
4 i | [ t | [ T
£ | I [ i [ TS B T B
T L Lt L L [ R B

1 ] 1

10 10 10

frequency, rad/sec

Figure 3.11: Real and imaginary magnitudes versus log frequency.

z11, z33 linear real mag versus linear freq

I - T I
| | | | |
[ | | i 1 |
g 1 L s L 1
E | ! 1 | |
2 b 1 ! | |
£ | 1 I I |
5 [ S A e
E | 1 | | b
| 1 I I 1
H i L. 1 t
5 6 7 8 9 10
z11, 233 linear imaginary versus linear freq
0 T/ T T T \ T T T
2 i | 1 1 1 1 l [ 1
2 [ | 1 1 | | 1 1 I
5 | | | 1 | 1 i
@ | | 1 | | 1 1 |
S T
% : | | | | ) I | |
1S | | | | | | 1 | I
2 l | | | | | | t
£ ' I I ' ! ! ! !
~ 0 1 | L I L ) L L L
0 1 2 3 4 5 6 7 8 9 10

frequency, rad/sec
Figure 3.12: Real and imaginary magnitude versus linear frequency.
Comments on real versus linear frequency, imaginary versus linear frequency:
1) These plots are useful in understanding the amplitudes of

transfer functions at resonance, as the peaks of the imaginary
curve represent the amplitude at resonance.



Chapter 3  Frequency Response Analysis 79

2) While the imaginary plot peaks at each resonance, the real
plot goes through zero at each resonance.

3.6.6 Real versus Imaginary (Nyquist)

z11, z33 real versus imaginary, "Nyquist”
15

T
1
|
|

T
b
I
i
i

Figure 3.13: Real versus imaginary (Nyquist).
Comments on real versus imaginary:

1) Frequency is not plotted directly on the real/imaginary plot; each
point on the plot represents a different frequency.

2) Plotting real versus imaginary is a very useful technique when
identifying resonant characteristics. The two resonances can be
readily seen, helping in identifying closely spaced resonances.

3) One method of identifying damping in a mode is to use the rate of
change of amplitude versus frequency (Maia 1997).



80  Vibration Simulation Using MATLAB and ANSY'S

3.7 Solving for Eigenvectors (Mode Shapes) Using the Transfer Function
Matrix

We have reviewed transfer functions, poles, zeros and frequency responses.
The next area we will cover in order to completely define the system is
eigenvectors, or mode shapes. At each natural frequency, the eigenvector
defines the relative motion between degrees of freedom. Understanding the
distribution of motion in each mode of vibration is essential in order to
intelligently modify the system’s resonant characteristic to solve resonance
problems.

Since eigenvectors define the relative motion between degrees of freedom, we
need to choose a degree of freedom against which to measure the other
motions. We can find the relative motion using any column of the transfer
function matrix. Choosing z, as the reference and solving for z,/z, and
Z,/z, using the first column of the transfer function matrix (we will compare
results using the second column later to show that they give the same results):

Z

F z mks® +k?

LS S (3.29)
Z  z, ms +3mks°+k

K

Z;

E _zy S

S B} W 3.30
z  z, m’s"+3mks’+k’ : (3:30)
Fl

Now that the ratios are known, we substitute the resonant frequencies (pole
values) one at a time to define the mode shape at that frequency, dropping the
second index, z,, — z,.

For mode 1: evaluatedat s = jo, =0

2 2 2
L metk Kk, (3.31)
z, m’s"+3mks” +k k ‘

zZ, =2, (3.32)



Chapter 3  Frequency Response Analysis 81

z, 'S k?
z, m’s*+3mks’+k* K7 (3.33)
z, =z | (3.34)

The interpretation of this mode shape is that at @, the ratios of motion of mass

2 and mass 3 to mass 1 are equal and are equal to 1. This is the rigid body
mode at 0 hz.

For mode 2: evaluated at s = jo, = j \/E
m

-k
mk| — [+k’
z,  mks’+k® [m] _0 (3.35)
T m’s* +3mks? +k? 2 - Tk
zZ, m's mz [2]+3mk[—k]+k2
m m :
z,=0 (3.36)
2z _ 'S : k> _
z, m’s'+3mks’ +k*> - I -k =-1 63D
! m’| — +3mk[—]+k2
m m
2, =—z, | (3.38)

The interpretation of this mode shape is that at ®, mass 2 has zero motion

relative to mass 1 (it is stationary). Mass 3 is moving out of phase with mass 1
with equal amplitude.

For mode 3: evaluated at s = jo, = jJﬁ
m

(2]

2z, _ mks? +k* - m -
- 7 4 mk 2 k2_ 2 —
7wkt el (o +3mk[ﬁ]+k2 (3.39)
m m
3k* +k - 2k ==2

Ttk K



82  Vibration Simulation Using MATLAB and ANSY'S

z, =2z (3.40)
Zy _ k2 _ k?
— 2.4 2 2 2
z, m’s" +3mks”+k [ 9k -3k 2
4+ mk =
m m’ 3 m +k (3.41)
k2
=F=
Z, = Z, (3.42)

The interpretation of this mode shape is that at ®, mass 2 is moving with

twice the motion of mass 1 and out of phase with it and mass 3 is moving in
phase with mass 1 and with the same amplitude.

Showing that the second column of the transfer function matrix could have
been used and would have given the same eigenvectors:

Z
2,4 2 2
_Iiz_=z_2=ms +2;nksz+k (3.43)
zZ oz mks” +k
FZ
Zy
2 2
_n_mks k) (3.44)
z, z, mks +k
FZ
Formode 1, m, =0
n K _
== |
“ (3.45a,b)
%
Z,

For mode 2, evaluatedat s = jo, = j\/E
m



Chapter 3  Frequency Response Analysis 83
2 p—
i , ., m L +2mk[k]+k2
2z, _m’s" +2mks” +k” _ m m
- 2 2 - _ o
L m[l]+k2 (3.46)

m
K -2k +k> 0

)

5o (3.47)
Z
Formode 3, s = jo, = j,’ﬁ
m
2 p—
. o mz[% +2mk[ik] %
2z, _m’s"+2mks” +k° m m
- LLSHd S
% mks” +k mk[—_3k ] K2 (3.48)
m
9k? —6k2 +k2  4K2
= > T = > =-2
3k +k? -2k
L (3.49)

z,

Summarizing the mode shapes in the modal matrix, z_, where the first

through third columns represent mode shapes for the first three modes,
respectively, and the first through third rows show the relative motion for the
first through third dof’s, respectively:

11 1
z,=(1 0 -2| (3.50)
1 -1 1

Figure 3.14 shows the mode shapes pictorially. There are many different
eigenvector scaling, or normalizing techniques, to be discussed later. It is not
important which normalization technique is used in visualizing mode shapes.
However, in using the modal matrix to calculate responses, the normalization
technique used is critical, as we will see in future chapters.



84  Vibration Simulation Using MATLAB and ANSYS

Because there is no damping, these modes are known as “normal” (as opposed
to “complex”) modes. With a normal mode, if the masses are started with
some multiple of the displacements of one of the modes, the system will
respond at only that frequency. During that motion, the masses will all reach
their maximum and minimum points at the same time. Mode shapes are
plotted in Figure 3.14, assuming an arbitrary value of 1 for z, :

1 1 1

jonmeonx o N ONNe)

Rigid-Body Mode, 0 rad/sec

1 ' 1
—> c— —>1 |(—
m1 —— m2 W m3

Q_ QO O _ O O

Second Mode, Middle Mass Stationary, 1 rad/sec

-2 1
i O A
m, 4 m, —/\/\,—m3

jomuoNonuo o NuoN

Third Mode, 1.732 rad/sec

Figure 3.14: Mode shape plots.



Chapter 3  Frequency Response Analysis 85

Problems
Note: All the problems refer to the two dof system shown in Figure P2.2.

P3.1 Set m,=m,=m=1, k =k, =k=1 and hand sketch the frequency
responses for the undamped system.

P32 (MATLAB) Set m =m,=m=1, k, =k,=k=1, modify the
tdofxfer.m code and plot the frequency responses of the two dof undamped

system using the transfer function and zero/pole/gain forms of Sections 3.5.5
and 3.5.6.

P3.3 (MATLAB) Set m, =m, =m=1, k, =k, =k =1, add damping to the
model from P3.2 and plot the transfer functions in Nyquist form, being careful
to use small enough frequency spacing to identify the resonances as shown in
Figure 3.13.

P34 (MATLAB) Set m, =m, =m=1, k, =k, =k =1, choose one of the
transfer functions for the undamped system and plot the poles and zeros in the
s-plane. Choose a frequency on the positive imaginary axis and hand calculate
the gain at that frequency. Correlate with the MATLAB calculated gain.

P3.5 Solve for the two eigenvectors for the system in P3.3 using the transfer
function matrix. Hand plot the mode shapes as in Figure 3.14.



CHAPTER 4

ZEROS IN SISO MECHANICAL SYSTEMS

4.1 Introduction

Chapters 2 and 3 discussed poles and zeros of SISO systems and their
relationship to transfer functions. The origin and influence of poles are clear.
They represent the resonant frequencies of the system, and for each resonant
frequency a mode shape can be defined to describe the motion at that
frequency. We have seen from our frequency response analyses in Chapter 3
that at the frequencies of the zeros, motions approach or go to zero, depending
on the amount of damping present. In Chapters 8 and 11 we will illustrate
how all the individual modes of vibration can combine at specific frequencies
to create zeros of the overall transfer function.

This chapter will expand on analyses shown in Miu [1993] to develop an
intuitive understanding for when to expect zeros in Single Input Single Output
(SISO) simple mechanical systems and how to predict the frequencies at
which they will occur. We will not cover the theory, but will state the
conclusions from Miu and show how the conclusions relate to two example
systems.

We will start by defining a series arrangement lumped spring/mass system.
We will develop guidelines for defining the number of zeros that should be
seen and show how to predict their frequencies. A MATLAB model is used to
illustrate the guidelines for various combinations of input and output degrees
of freedom. Only the MATLAB code results are discussed; the code itself is
not listed or discussed as it uses techniques found later in the book. However,
the reader is encouraged to run the code and experiment with various values of
the input and number of masses in the model to become familiar with the
concept.

Next, an ANSYS finite element model of a tip-excited cantilever is analyzed.
The resulting transfer function magnitude is plotted using MATLAB to show
an overlay of the poles of the “constrained” system and their relationship with
the zeros of the original model.



88  Vibration Simulation Using MATLAB and ANSYS

4.2 “n” dof Example

Figure 4.1 shows a series arrangement of masses and springs, with a total of

€6 9%

n” masses and “nt+1” springs. The degrees of freedom are numbered from
left to right, z, through z_.

[—’ z1 ’—» z2 ¥ r’ z3 |—> z(n-2) |—>z(n-1) [—> z(n)

r—» Fi v r-»z(n)
i me faf wd fad ma b ms paeoe [T el T LT ] T (1] A
No Degrees of Freedom to . No Degrees of Freedom to
Left of Constrained DOF: Right of Constrained DOF:
No Zeros No Zeros
rFs @02
Il o e bl el e o een [T
L |  —|
Four Degrees of Freedom to Two Degrees of Freedom to
Left of Constrained DOF: Right of Constrained DOF:
Four Zeros Two Zeros
[ 2P

.
Lt e 2 oo ] el o Jaeeee [T P T P T A T e o
| A

Two Degrees of Freedom to (n-3) Degrees of Freedom

Left of Constrained DOF: to Right cggghstralned
Two Zeros Number of Zeros for Driving (n-3) Zeros
Point Transfer Function
(n-1)

Figure 4.1a,b,c,d: “n” dof system showing various SISO input/output configurations.

Miu [1993] shows that the zeros of any particular transfer function are the
poles of the constrained system(s) to the left and/or right of the system
defined by constraining the one or two dof’s defining the transfer function.
The resonances of the “overhanging appendages” of the constrained
system create the zeros.

Two limiting cases are immediately available in (1) and (3) below:

1) For the transfer function from one end of the structure to the
other, Figure 4.1b, there are no overhanging appendage



Chapter 4  Zeros in SISO Mechanical Systems 89

structures to the left or right of the constrained structure, so there
are no zeros.

2) For an arbitrary transfer function, Figure 4.1c, there will be a
structure to the left and/or to the right of the constrained dof’s.
The total degrees of freedom of the overhanging appendage(s)
will give the total number of zeros in the transfer function.

3) For the driving point transfer function, Figure 4.1d, the force and
displacement are measured at the same dof, so there are a total of
(n—1) degrees of freedom left, hence (n—1) zeros of the

transfer function. All but one of the masses are overhanging
appendages.

In the analysis that follows, we will calculate frequency responses and
pole/zero plots for various transfer functions using the MATLAB code
ndof _numzeros.m.

4.2.1 MATLAB Code ndof_numzeros.m, Usage Instructions

The MATLAB code is based on the ndof series system in Figure 4.1. The
code allows one to choose the total number of masses in the problem and sets
the values of the masses and stiffnesses randomly between the values of 1 and
2. The program then allows one to choose which transfer function to
calculate, and shows the pole/zero plots for the original system as well as the
poles for the two structures to the left and/or right. For now, the reader should
not worry about the details of the code, which will be covered in later
chapters, but should use the code to study the pole/zero patterns in systems
with different numbers of degrees of freedom and for different input/output
dof’s. Sometimes the random values chosen for stiffnesses and damping will
cause the poles and zeros to be so close together that they will cancel each
other. If this is the case and the number of poles and zeros do not match the
expected number, rerun the code until more widely spaced poles/zeros are
randomly chosen and the required poles and zeros are apparent.

4.2.2 Seven dof Model — z7/F1 Frequency Response

Taking a seven-mass model as an example, the resulting frequency responses
and pole-zero plots are displayed on the following pages. In all cases, the
random distribution of masses and spring stiffnesses is used, resulting in a
different set of variables for each run.

Figure 4.2 shows the frequency response for applying a force at the first mass
and looking at the output at the last (seventh) mass. Note that in accordance



Vibration Simulation Using MATLAB and ANSYS

each mass provides an attenuation of —40db/decade, after the last of seven

appendages. Since there are seven masses, there should be seven poles. Since
poles the slope of the curve is 7*( —40 db/decade) = —280 db/decade.

with the prior analysis, there should be no zeros as there are no “overhanging”

90

10

10°
frequency, rad/sec
poles/zeros of system

transfer function, 7 dof, input at 4, output at 7

10"

Figure 4.2: z17 transfer function frequency response, seven poles, no zeros.

Figure 4.3: z17 pole/zero plot showing only seven poles.



Chapter 4  Zeros in SISO Mechanical Systems ' 91

4.2.3 Seven dof Model — z3/F4 Frequency Response

The same seven dof system provides the following frequency response when
the force is applied at mass 3 and the output is taken at mass 4. There are two
“overhanging” appendages to the left of mass 3, masses 1 and 2, and there are
three “overhanging” appendages to the right of mass 4, masses 5, 6 and 7.
These masses should combine to give a total of five zeros and once again,
seven poles as shown below.

transfer function, 7 dof, input at 3, cutput at 4

80 T C

R

magnitude, db

frequency, rad/sec
Figure 4.4: z34 transfer function frequency response, seven poles and five zeros.

polesizeros of system

NI A I
[1 b * | 1

1 1 |
R R S
i | 1 [
L === + ------ t-- == -
| i o] 1 1

05 I I i | )
SFT - [ A Tooo o~ r
I 1 * ] i

| 1 l | i
OF7----- [ [ R i
I 1 I 1 |

i 1 * | |
05§ ----- roT T [ T I
1 1 | |

P S [ . f ,,,,, Lo [
1 | 1 |

[ I 1 1 I
A5+ - - - - [ —— e =
1 | 1 1

1 I 1 1
21 ---- - [l + ***** T i~
i 1 ® | L

-2 -1 0 1 2

Figure 4.5: 234 pole/zero plot showing seven poles and five zeros.



92  Vibration Simulation Using MATLAB and ANSYS

poles/zeros of system poles of lhs poles of rhs

2
1 +

NI oo

OF- -~ m -
I |

J [ Sp—— E S
! '
%

-2 *1 “““ |
- 0

Figure 4.6: z34 poles and zeros; poles of left-hand and right-hand constrained systems are
the same as the zeros of the unconstrained system.

The left-hand plot in Figure 4.6 displays the z34 poles and zeros. The middle
plot shows the poles of the system to the left of mass 3. The right plot shows
the poles of the system to the right of mass 4. It is clear that the poles of the
two right plots are the zeros of the z34 system.

4.2.4 Seven dof Model — z3/F3, Driving Point Frequency Response

For the same seven dof system with force and output taken at the same node
(driving point transfer function), there should be six “overhanging” masses
providing zeros. Therefore the frequency response plot in Figure 4.7 shows
six zeros, with alternating pole/zero pairs.



93

Zeros in SISO Mechanical Systems

Chapter 4

transfer function, 7 dof, input at 3, output at 3

t
1

b
1

qp “epnuubew

10'

107"

frequency, rad/sec

1X

233 transfer function frequency response, seven poles and the expected s

.
H

Figure 4.7

Zeros.

. )
: |
o | | | |
- | I 1 |
r | 1 |
£ I 1 I | 1 1
o |, | | 1 | 1 i
20 | ! I I I |
20 | | | i | |
5| 1 | | o
mg@@mww\% + Ok = — - — £+ IO 4—GCHOY
@« | i | i I I | | '
N i | l | | | | |
8 | | i 1 | | i i
3 | i 1 i | 1 ! |
7,,\ I ]
v ! 1 I | N
| I i | i 1 | | 1
| | | | | I ' | l
| 1 | 1 | I | | l
| 1 | 1 | | | | )
R T R [ S N P R B
Lr ™73 I i | I I I 1l
N B - w0 ° AN i} o
- < < \2

Figure 4.8: 233 pole/zero plot showing seven poles and six zeros.



94  Vibration Simulation Using MATLAB and ANSYS

poles/zeros of system poles of lhs poles of rhs

-2 0 2

" Figure 4.9: 233 poles and zeros. Poles of left-hand and right-hand constrained systems are
the same as the zeros of the unconstrained system.

4.3 Cantilever Model —- ANSYS
4.3.1 Introduction

Now that we have seen how the “constrained” system artifice works for a
simple lumped parameter system, it is interesting to consider how the artifice
would work for a continuous system, such as a cantilever beam.

The finite element program ANSYS is used to analyze a cantilever beam with
a driving point transfer function at the tip. The transfer function we are
interested in is the displacement at the tip, z, due to a vertical force at the tip,
F, as shown in Figure 4.10. The “constrained” structure whose poles should
define the zero locations for the unconstrained system is the original cantilever
with the addition of a simple support at the tip.



Chapter4  Zeros in SISO Mechanical Systems 95

z, F

—>

DAL AN

Original Cantilever,
M Driving Point
Transfer Function

"Constrained” ‘A—
System, with
DOF'’s of transfer
function
constrained

|

Figure 4.10: Unconstrained and constrained cantilevers used for driving point
transfer function example.

4.3.2 ANSYS Code cantfem.inp Description and Listing

The input listings for the ANSYS models of the cantilever and simply
supported tip cantilever are below. The cantilever input program is
cantfem.inp and the supported tip input program is cantzero.inp. Both
programs can be run if one has access to ANSYS by typing
“/input,cantfem,inp” or “/input,cantzero,inp” at the ANSYS program
command prompt. The programs will run with no further input and will output
graphs of the mode shapes and frequency response. Both programs build the
model, and calculate and output the eigenvalues (natural frequencies) and
eigenvectors (mode shapes). Cantfem.inp then calculates and outputs the
frequency response. The mode shapes are shown in cantfem.grp and
cantzero.grp and the frequency response is shown in cantfem.grp2. They can
all be viewed by using the ANSYS Display program and loading the
appropriate file.

/title, cantfem.inp, 0.05 x 1 x 20mm aluminum cantilever beam, 20 elements

/prep7

et,1,4 ! element type for beam
! aluminum

ex,1,71e6 ! mN/mm*2

dens,1,2.77¢-6 . ! kg/mm~"3




96  Vibration Simulation Using MATLAB and ANSYS

nuxy,l1,.345

! real value to define beam characteristics
r,1,1,,00001041,.004166,.05,1 ! area, moments of inertia, thickness
! define plotting characteristics

fview,1,1,-1,1 ! fso view

/angle, 1,-60 !is0 view

/pnum,mat, 1 ! color by material

/num, 1 ! numbers off

/type,1,0 ! hidden plot

/pbe,all, 1 ! show all boundary conditions

csys,0 . ! define global coordinate system
! nodes

n,1,0,0,0 ! left-hand node
n,21,20,0,0 ! right-hand node

fill,1,21 . !interior nodes

nall
nplo

! elements

type,1

mat,]

real,1

el,2
egen,20,1,-1

! constrain left-hand end

nall
d,1,all,0 ! constrain node 1, all dof's

! constrain all but uz and roty for all other nodes to allow only those dof's

! this will give 20 nodes, node 2 through node 21, each with 2 dof, giving a total of 40 dof
! can calculate a maximum of 40 eigenvalues if don't use Guyan reduction to reduce size of
! eigenvalue problem

nall
nsel,s,node,,2,21
d,all,ux

d,alluy
d,all,rotx
d,all,rotz

nall
eall
nplo




Chapter4  Zeros in SISO Mechanical Systems ' 97

eplo

| B eigenvalue run

fini ! fini just in case not in begin

/solu ! enters the solution processor, needs to be here to do editing below

allsel ! defdult selects all items of specified entity type, typically nodes, elements

antype,modal,new

modopt,reduc,20 ! method - reduced Householder, number of modes to extract
expass,off ! key = off, no expansion pass, key = on, do expansion
mxpand,20,,,no ! nummodes to expand

total,20,0 ! total masters, 20 to be used, 1 to exclude rotational dofs
allsel

solve ! starts the solution of one load step of a solution sequence, modal here
fini

! plot first mode

/postl o - BEa AR I

set,1,1

pldi,1

!***************** Olltput ﬁ-equencies ook ok o ok ok o ok sk ok sk e ke sk sk ok sk ok ok

/output,cantfem,frq ! write out frequency list to ascii file .frq
set, list
/output,term ! returns output to terminal

1 desksteokskok ok stk ok ok ok ok ok output eigenvectors ok 3 ok e 3K 3k sk ok 3k ok ok ok s ke ofe ok ok o ok ok

! define nodes for output: forces applied or output displacements

nsel,s,node,,21 ! cantilever tip
/output,cantfem,eig ! write out eigenvectors to ascii file .eig
*do,i,1,20
set,,i
prdisp
*enddo
/output,term

1 kskakokskokokokok ok A koK ok ok ks plOt modes FEFFRFRdkkkkEd Ak dokkokk




98  Vibration Simulation Using MATLAB and ANSYS

! pldi plots

/show,cantfem,grp,0
allsel

fview,1,.-1,, ! side view for plotting
/angle,1,0
fauto

*do,i, 1,20
set,1,i
pidi
*enddo

/show,term

| F¥xrkkkrkkkrirk calculate and plot transfer functions ***¥¥%X%xkkkikkk

fini

/assign,rst,junk,rst ! reassigns a file name to an ANSY'S identifier
/solu

dmprat,0.01 ! sets a constant damping ratio for all modes, zeta = 0.01
allsel

eplo ! show forces applied

f,21,fz,1 ! 1 mn force applied to node 21, tip node

/title, cantilever with tip load
antype,harmic ! harmonic (frequency response) analysis
hropt,msup,20 ! mode superposition method, nummodes modes used

harfrq,100,1000000 ! frequency range, hz, for solution, -1 to 10 rad/sec

hrout,off,off ! amplitude/phase, cluster off

kbe,1

nsubst, 10000 ! 10000 frequency points for very fine resolution

outres,nsol,all, ! controls solution set written to database, nodal dof solution, all

! frequencies, component name for selected set of nodes
solve
fini
/post26

file,,rfrq ! frequency response results




Chapter 4  Zeros in SISO Mechanical Systems 99

xvar,0 ! display versus frequency
lines, 10000 ! specifies the length of a printed page for frequency response listing
nsol,2,21,u,z ! specifies nodal data to be stored in results file

!u - displacement, z direction
! note that nsol,1 is frequency vector
v

! plot magnitude

pleplx,0

/grid,1

/axlab,x,frequency, hz

/axlab,y,amplitude, mm

/gropt,logx,1 ! log plot for frequency
/gropt,logy, ! log plot for amplitude

/show,cantfem,grpl ! file name for storing
plvar,2
/show,term

! plot phase

pleplx, 1

/grid, 1

/axlab,x,freq

/axlab,y,phase, deg _ !label for y axis
/gropt,logx, 1 ! log plot for frequency
/gropt,logy,0 ! linear plot for phase

/show,cantfem,grpl

plvar,2

/show,term

! save ascii data to file

preplx, 1 ! stores phase angle in asci file .dat
/output,cantfem,dat

prvar,2

/output,term

fini

4.3.3 ANSYS Code cantzero.inp Description and Listing

ftitle, cantzero.inp, 0.05 x 1 x 20mm aluminum tip constrained cantilever beam, 20 elements
/prep7
et,1,4 ! element type for beam

! aluminum




100  Vibration Simulation Using MATLAB and ANSYS

ex,1,71e6 ! mN/mm”*2
dens,1,2.77¢-6 ! kg/mm"3
nuxy,1,.345

! real value to define beam characteristics
r,1,1,.00001041,.004166,.05,1 ! area, moments of inertia, thickness
t define plotting characteristics

fview,1,1,-1,1  liso view

/angle,1,-60 ! iso view

/pnum,mat, 1 ! color by material

/mum, 1 ! numbers off

/type,1,0 ! hidden plot

/pbe,all,1 ! show all boundary conditions

csys,0 ! define global coordinate system
! nodes

n,1,0,0,0 ! left-hand node
n,21,20,0,0 ! right-hand node

fill,1,21 ! interior nodes

nall
nplo

! elements

type,1

mat, 1

real,1

e 1,2
egen,20,1,-1

! constrain left-hand end

nall
d,1,all,0 ! constrain node 1, all dof's
d,21,uz,0 ! constrain tip

! constrain all but uz and roty for all other nodes to allow only those dof's

! this will give 20 nodes, node 2 through node 21, each with 2 dof, giving a total of 40 dof
! can calculate a maximum of 40 eigenvalues if don't use Guyan reduction to reduce size of
! eigenvalue problem

nall
nsel,s,node,,2,21
d,all,ux

d,all,uy
d,all,rotx
d,all,rotz




Chapter 4

Zeros in SISO Mechanical Systems 101

nall
eall
nplo
eplo

| Rk Rk Rk R RRRRAK ojgenyalue run FREERIRERORRKRR IO Ko

fini v
/solu

allsel
antype,modal,new
modopt,reduc,20
expass,off
mxpand,20,,,n0
total,20

allsel

solve

fini

! plot first mode
/postl

set,1,1

pldi,1

! fini just in case not in begin

! enters the solution processor, needs to be here to do editing below

! default selects all items of specified entity type, typically nodes, elements
! method - reduced Householder, number of modes to extract

! key = off, no expansion pass, key = on, do expansion

! nummodes to expand
! total masters, 20 to be used, exclude rotational dofs

! starts the solution of one load step of a solution sequence, modal here

1 ARk ok ok dokok kKK Kk K Output ﬁ-equencies S ok o 3k ok ok e ook o o sl ko ok ok ok KK R ok

/output,cantzero,frq

set,list

/output,term

1 Akokokskdodok koo dokk ok ok output eigenVeCtOI'S

! write out frequency list to ascii file .frq

! returns output to terminal

e sk o ke ok e ok

! define nodes for output: forces applied or output displacements

nsel,s,node,,10

/output,cantzero,eig

*do,i, 1,20
set,,i
prdisp
*enddo

! cantilever midpoint

! write out eigenvectors to ascii file .eig




102 Vibration Simulation Using MATLAB and ANSYS

/output,term

!******************* plot modes Aok k
! pldi plots

/show,cantzero,grp,0
allsel

fview,1,,-1,, ! side view for plotting
/angle,1,0
fauto

*do,i,1,20
set,1,i
pldi
*enddo

/show,term

4.3.4 ANSYS Results, cantzero.m

The driving point frequency response for cantfem.inp is shown in Figure 4.11.
The ANSYS frequency and magnitude output results are read into MATLAB
and plotted in order to be able to overlay the resonances from the cantzero.inp
ANSYS run. The MATLAB code to plot the overlay is cantzero.m, which
reads in two input programs, cantfem_magphs.m and cantzero_freq.m.

The resonant frequencies (poles) of the cantilever and constrained tip
cantilever models are listed in Table 4.1.

According to the guidelines for zeros discussed earlier in the chapter, the poles
of the frequency response plot should be the same frequencies as shown in the
“cantfem freq” column above. The zeros of the frequency response should be
the same frequencies as shown in the “cantzero freq” column above.




Chapter 4

Zeros in SISO Mechanical Systems

103

mode cantfem freq, hz

10 0.11592E+06
11 0.14196E+06
12 0.17098E+06

cantzero freq, hz

1 457.14 2004.6
2 2864.4 6495.0
3 8018.8 13548.
4 15709. 23162.
5 25961. 35336.
6 38771. 50071.
7 54147. 67380.
8 72102. 87291.
9 92672. 0.10985E+06

0.13520E+06
0.16337E+06
0.19495E+06

13 0.20323E+06 0.22951E+06
14 0.23907E+06 0.26909E+06
15 0.27885E+06 0.31129E+06
16 0.32274E+06 0.35968E+06
17 0.37012E+06 0.40928E+06
18 0.41860E+06 0.45602E+06
19 0.46289E+06 0.49344E+06
20 0.49490E+06 0.89212E+06

Table 4.1: Unconstrained (cantfem) and constrained tip (cantzero) cantilever resonances.

The constrained system poles in Figure 4.11 are shown below the curve with
“0” symbols. Note that the “o’s” align with the zeros of the unconstrained

system.

magnitude, db

Cantilever Driving Point Transfer Function and Constrained Pole Freqg

T — T ey manadl

uencies

— unconstrained system
O constrained system poles

NN
[RNRN]

100 -

I |
[ frrnn
I i e

-20 match unconstrained system [
zeros I
T T TTTTTT T IR
40 —LLuibiu Lorniy
| IR f it
| [ | [ N
| [ | frren
60 - - CITET T T It
| I
t i
1 1

-120 STITANT T 1T T T T
[ NI RN [ (0
o rrne ¢ ot
_140 RN L | N
107 10° 10* 10

frequency, hz

Figure 4.11: Cantilever driving point transfer function frequency response plot with

overlaid frequencies of contrained-tip cantilever poles — which should match the

unconstrained system zeros.



104  Vibration Simulation Using MATLAB and ANSYS

Problem
Note: The problem refers to the two dof system shown in Figure P2.2,

P4.1 Use the MATLAB code ndof numzeros.m to identify the number of
poles and zeros for a five dof system for the following: zl11, z23, z33.
Correlate the poles of the constrained system with the zeros of the original

system.



CHAPTER 5

STATE SPACE ANALYSIS
5.1 Introduction

In Chapter 2 we derived the equations of motion for the tdof system shown in
Figure 5.1, and showed how to solve the coupled differential equations for
various transfer functions. In order to solve time domain problems using a
computer, it is desirable to change the form of the equations for an n dof
system with n second order differential equations to 2n first order differential
equations. The first order form of equations of motion is known as state
space form.

This chapter will develop the state space formulation for the tdof example.
Once the state space formulation is completed, the subject of complex
eigenvalues and eigenvectors, resulting in complex modes of vibration, will
be covered in some detail. Once complex modes are understood,
comprehending real modes which arise from the undamped case in the modal
analysis section (Chapter 7) is simple.

Having an understanding of complex modes is especially helpful in working
with experimental modal analysis.  There are some very powerful
experimental techniques available for testing and then visualizing the modes
of vibration of structures. Frequency response data is taken at a number of
selected positions on the structure and software is available to fit the data and
define modes of vibration. The software identifies the resonant frequencies of
the system and defines a damping value for each mode. It is then possible to
create a model of the geometry of the test point locations and build a virtual
model which can be animated to display the shape of motion of each mode.

The software has options which allow one to view the mode as either “real” or
“complex.” When the mode is viewed as “real,” all the points on the structure
move such that they all reach their maximum or minimum positions at the
same point in time, which is consistent with our definition of “principal” or
“real” modes defined in Chapter 7.

When the mode is viewed as “complex,” the structure does not move such that
all points reach either their minimum or maximum positions at the same point
in time. Instead there appears to be a wave that moves along the structure as
the different points reach their minimum or maximum positions at different
times. For lightly damped mechanical structures, the assumption is often
made that the modes are “real,” allowing use of modal analysis methods and
efficient finite element models. For structures that are not “lightly damped,”



106  Vibration Simulation Using MATLAB and ANSYS

the modal analysis method cannot be used and the state space formulation is
the only practical method of solving the problem.

It is difficult to visualize complex modes without an animated structure
model, but we will use a graphical method called an Argand diagram to
explain how modes described by complex eigenvectors and complex
eigenvalues combine to create physical motion of the system. We will find
that if the unforced system is started from a set of initial conditions that match
the complex eigenvector then only a single mode is excited. We will show
how to calculate the transient response of the system for that specific initial
condition case and illustrate how only a single mode is excited.

Chapter 6 will cover how to use the state space formulation to obtain both
frequency and time domain results with MATLARB.

5.2 State Space Formulation

-

Figure 5.1: Original damped tdof system model.

Repeating the matrix equations of motion from (2.25):

m 0 0|Z c, -, 0 ||z
0 m, O (%, |+ - (c+c,) —¢, ]|z,

0 0 m,|Z 0 —C c Z
3 3 2 2 3 (51)
- k, -k, 0 ||z E
’ + -k, (&, +k,) -k, ||z |=|E
0 -k, k, || z, F,

Expanding the equations:

mZ +c,z, —¢,z, +k,z, -k,z, =F,
m,Zz, —¢,z, +(c, +¢,)z, —c,z; ~kz, +(k, +k,)z, —-k,z, =F, (5.2a,b,c)
m,%, —c,2, +¢,Z; ~k,z, +k,z, =F,



Chapter 5 State Space Analysis , 107

The three equations above are second order differential equations which
require knowledge of the initial states of position and velocity for all three
degrees of freedom in order to solve for the transient response.

In the state space formulation, the three second order differential equations are
converted to six first order differential equations. Following typical state

[T 1)

space notation, we will refer to the states as “x” and the output as “y.

Start by solving (5.2) for the three equations for the highest derivatives, in this
case the three second derivatives, Z,, Z,, Z,:

zZ, = (F —cz,+¢z, -k,z, +k,z,)/m,
z, = (F, +¢,z, — (¢, +¢,)z, +¢,z, + k,z, - (k, +k,)z, +k z,)/m,
z, = (F, +c¢,2, —¢,z, +k,z, -k,z,)/m,
(5.3a,b,c)

We now change notation, using “x” to define the six states; three positions
and three velocities:

X, = z, Position of Mass 1 5.4

X, =z, Velocity of Mass 1 5.5
X, =z, Position of Mass 2 (5.6)
X, =z, Velocity of Mass 2 (N
X; = z; Position of Mass 3 (5.8)
X¢ = 2, Velocity of Mass 3 ’ 5.9

By using this notation, we observe the relationship between the state and its
first derivatives:

Z, =X, =X, (5.10)

Zy=X, =%, (51D
2, = Xg = X4 , (5.12)

Also between the first and second derivatives:

5 =X, (5.13)
7, = X, N A )
7, = X, (5.15)



108  Vibration Simulation Using MATLAB and ANSYS

Rewriting the three equations for Z,, Z,, Z, in terms of the six states x,;
through x, and adding the three equations defining the position and velocity
relationships:

X =X,
%, = (F —cx; +ex, -k x, +k;x;)/m,

Xy, =X,

) (5.16a-f)
x, =(F, +¢;x, = (¢, +¢,)x, +¢,x, + k x, —(k, +k,)x; +k,x,)/m,
X5 =X
x¢ = (E +c¢,x, —¢,x, +k,x, —k,x,}/m,
Rewriting the equations above in matrix form as:
0o 1 0 0 0 0] [0 ]
] | B a g | R
. m - m m, m, m,
X, X,
. 0 0 0 1 0 0 0
X, X3
clF| ke o k) ere) koo | V4| RO
.4 m, m, m, m, m, m, ! m,
X Xs
. 0 0 0 0 0 1 0
Xg Xe
N R T N S
L m, m; m, 1, L m; |
X = ' A , x + B u
’ (5.17a,b)

5.3 Definition of State Space Equations of Motion

Schematically, a SISO state space system is represented as shown in Figure
5.2. We will define the blocks in the following sections. The scalar input u(t)
is fed into both the input matrix B and the direct transmission matrix D. The
output of the input matrix is an nx1 vector, where “n” is the number of states.
For a SISO system, the direct transmission matrix is a scalar, and its output is
fed into a summing junction to be added to the output of the C matrix.

The output of the B matrix is added to the feedback term coming from the
system matrix and is fed into an integrator block, where “I” is an nxn identify
matrix. The output matrix has as many rows as outputs, a single row for a



Chapter 5  State Space Analysis 109

SISO system, and has as many columns as states, n. The output y(t) is the
sum of the output of the C and D matrices.

Direct
Transmission
Matrix

s > D
L~

Input Matrix Integrator Block Output Matrix

u(® { B ol 1 UK C —+— 0
Input o Output
)

ystem Matrix

A

i

Figure 5.2: State space system block diagram.

Notation for equations of motion in state space form is:
x = Ax + Bu (5.18)

where the A and B matrices are shown in (5.17a). Matrix A is known as
the system matrix, matrix B is the input matrix, and scalar u is the input. The
column vector x is the state of the system.

5.4 Input Matrix Forms
Because “u” is a scalar, the nature of the input matrix B changes depending

on what input is used. If the system is a Single Input (SI) system with a force
either at mass 1, 2 or 3, the B matrix changes as follows:



110  Vibration Simulation Using MATLAB and ANSYS

[0 ] (0] 0
F 0 0
m, 0 0
F: B=/0|, F: B=|E|, FE: B=|0 (5.192,b,0)
0 m, 0
0 0 o K,
[0 | 0] | m, |

If the same forcing function u (for example, a step function or sine function) is
applied to several degrees of freedom simultaneously (for example, a force of
magnitude F, to mass 1 and a force of magnitude F, to mass 3) the input

matrix would become:

(5.20)

5|:ﬂooo§|:ﬂo

Lm; |

For a Multi Input (MI) system, where forces are applied independent of one
another to the separate masses, a multiple column input matrix is appropriate.
For example, for different inputs at mass 1 and mass 2, none at mass 3, the

input matrix would become:

(5.21)

-]

1}
oooo_5|:no
oo§|~*ﬂooo




Chapter 5  State Space Analysis 111

5.5 Output Matrix Forms T

To account for the case where the desired output is not just the states but is
some linear combination of the states, an output matrix C is defined to relate
the outputs to the states. Also, a matrix D, known as the direct transmission
matrix, is multiplied by the input “u” to account for outputs that are related to
the inputs but that bypass the states.

y= Cx +Du (522)

The output matrix C has as many rows as outputs required and as many
columns as states. The direct transmission matrix D has the same number of
columns as the input matrix B and as many rows as the output matrix C.

In our example, we are interested in all six of the states, displacements and
velocities, so the matrix output equation becomes, where C is the identity
matrix and D is assumed to be zero:

[y,] [1 0 0 0 0 0][x,] [0]

Y, 01 00 0 0||x, 0
001000 0

- R (5.23)

A 00010 Of|x, 0

Vs 00001 0|fx, 0

Y| [0 0 0 0 0 1]|x4] |O]

Expanding, the matrix equations become:

Y =X, (=z) (5.24)
Y. =X, (=1%) (5.25)
Yi=%X;  (=2) (5.26)
Ye = X4 (=2,) (5.27)
Ys=Xs  (=12y) (5.28)

Vs =X (=2) (5.29)



112 Vibration Simulation Using MATLAB and ANSYS

If we were only interested in the three displacements and not the three
velocities, the output equation would be, assuming D is zero:

r -

X,
X,
Y, 1 00000

X
v |y,|=[0 01 000 X3 + (0)(D) (5.30)

A 0000T10 X“

5

| X6 |

Expanding:

=% (=z) (53D
Y, = X, (=2z,) (5.32)
;=% (=z) (5.33)

On the other hand, if the outputs are linear combinations of the states, as in a
control system problem, the output equation could look like {(where a, b and ¢
are scalars), assuming D is zero:

]
Y, 0 0a 0Db 0fx,
01 0 0 0
21=|° 4 o)) (5.34)
Y, 1 0000 Of|x,
v.] [0 001 0 0f|x,
[ X6
Expanding:
y, = ax, + bx, (= az, +bz,) (5.35)
y, =CX, + X, (=cz +2z,) (5.36)
Y =X (=12) (5.37)

Ys =Xy (=z,) (5.38)



Chapter 5  State Space Analysis 113

If a single force is applied and a single output is desired (SISO), for example,
a force applied at mass 1 and the output displacement at mass 3, assuming D
is zero:

y=[0 0 0 0 1 0] +O0) (5.39)

With all the possible variations of the output equation, the state equation never
changes; it is always:

x = Ax + Bu (5.40)

5.6 Complex Eigenvalues and Eigenvectors — State Space Form

The most basic analysis one can perform on a dynamic system is to solve for
its eigenvalues (natural frequencies) and eigenvectors (mode shapes). In this
section we will develop the most general case where there are no limitations
on the presence or magnitude of the two damping terms, which could result in
complex eigenvalues and eigenvectors.

Start by postulating that there is a set of initial conditions such that if the
system is released with that set, the system will respond in one of its natural

modes of vibration. To that end, we set the forcing function to zero and write
the homogeneous state space equations of motion:

X = Ax (5.41)
We define motion in a principal mode as:

x, =x,; " (542
Where:

A, is the i" eigenvalue, the natural frequency of the i mode of vibration
x, is the vector of states at the i frequency

x,, is the i" eigenvector, the mode shape for the i™ mode

mi



114  Vibration Simulation Using MATLAB and ANSYS

For our tdof (z, toz,), six state (x, tox,) system, for the i eigenvalue and
eigenvector, the equation would appear as:

Zy (Xli X mli
2 X2 X mai
' %Zi _ | Xai =xmiexit _ | Xmai RO (5.43)
Zyi X4 X nai
Zy Xs; Xmsi
_231J L Xs6i | L Xmsi |

Differentiating the modal displacement equation above to get the modal
velocity equation:

m

- d At At
X =— R = )\, . 5.44
" [xme :I X,€ (5.44)

Substituting into the state veqhation and canceling the éxponential terms leads
to:

X = Ax
Ax, e = Ax_eM
e (5.45a-d)
(AI-A)x,, =0

Equation (5.45c¢) is the classic “eigenvalue problem.” If x . is not equal to

zero in (5.45d), a solution exists only if the determinant below is zero (Strang
1998):

Al-A)=0 (5.46)
I )

Taking the system matrix A from (5.17a) and inserting in (5.45):



Chapter 5 State Space Analysis 115
[0 1 0 0 0 0 |
-k o k S 0 0
m, m m, m,
0 0 0 1 0 0
AM-A)=AI-| k, ¢ -k +k,) —(c,+c,) k, ¢,
‘ m, m, m, m  m, m,
0 0 0 0 0 1
0 0 Kk, L2 -k, —o
L m;, m, m, m, |
(547)

In Chapter 10 we will use the undamped version of (5.46) with c1 =c2 =0 to
discuss “normal” modes, where we will find that taking the determinant in
closed form is practical. For the tdof damped system matrix, taking the closed
form determinant is far too complicated so we will use MATLAB’s “eig”
function to solve the eigenvalue problem numerically, using specific values of
m, c and k. We will use the MATLAB code tdof non_prop_damped.m as
we continue our exploration of complex modes.

5.7 MATLAB Code tdof_non_prop_damped.m: Methodology, Model
Setup, Eigenvalue Calculation Listing

The sequence of development of complex modes is as follows:

1

2)

3)

4

3)

6)

solve original damped system equation for
complex eigenvalues and eigenvectors

normalize the eigenvector entries to unity

calculate magnitude and phase angle of each of the
eigenvector entries

use the Argand diagram to visualize the motion of
a complex mode

calculate the percentage of critical damping
(damping ratio) for each mode

calculate the motions of the three masses for all
three modes



116  Vibration Simulation Using MATLAB and ANSYS

7) plot the real and imaginary displacements of each
of the degrees of freedom separately

We have explored how to calculate the eigenvectors or mode shapes for an
undamped problem using the transfer function matrix (Chapter 3). The modes
for the undamped problem were real modes, meaning that the position
elements of the eigenvectors were real, not complex, and we were able to plot
diagrams showing the shape of the modes. For complex modes, it is not
possible to draw a picture of the deformed mode shape because there are
phase differences between the various degrees of freedom which prevent them
from reaching their maximum/minimum points at the same point in time.
This leads to the apparent “traveling wave” in an animated mode.

The first section of tdoef non prop_damped.m sets up the state space
equations of motion and solves the eigenvalue problem for damping values of

¢, =0.1,¢c,=02:

% tdof non_prop_damped.m non-proportionally damped tdof model
clf;
legend off;
subplot(1,1,1);
clear all;
% define the values of masses, springs, dampers
ml=1;
m2=1;
m3=1,

kl=1;
k2=1;

% define arbitrary damping values
¢l = input('input value for cl, default 0.1, ... ');

if (isempty(cl))

cl =0.1;
else
end

¢2 = input(‘input value for cl, default 0.2, ... );

if (isempty(c2))
c2=0.2;

else

end




Chapter 5  State Space Analysis 117

% define the system matrix, aphys, in physical coordinates
aphys =[ 0 1 0 0 0 0
-k1/ml  -cl/ml kl/ml cl/ml 0 0
0 0 0 1 0 0
kl/m2  cl/m2  ~(kl1+k2)m2  -(cl+c2y/m2 k2/m2 ¢2/m2
0 0 0 0 0 1
. 0 0 k2/m3 c2/m3 -k2/m3  -c2/m3];
% solve for the eigenvalues of the system matrix

[xm,lambda] = eig(aphys);
% take the diagonal elements of the generalized eigenvalue matrix lambda

lambdad = diag(lambda);

The six eigenvalues, lambda values, are listed below. Since we have three
degrees of freedom, there should be three sets of complex conjugate
eigenvalues.

xm =
Columns 1 through 4

-0.0567 - 0.1940i -0.0567 +0.1940i 0.2886 - 0.4085i 0.2886 + 0.4085i1
0.3452 - 0.0535i 0.3452 +0.05351 0.3865+0.3190i 0.3865 - 0.3190i
0.0624 + 0.40291 0.0624 - 0.4029i -0.0218 - 0.0123i -0.0218 + 0.0123t
-0.7046 + 0.0162i -0.7046 - 0.01621 0.0139 - 0.02091 0.0139 + 0.02091
-0.0057 - 0.2089i -0.0057 + 0.2089i -0.2668 + 0.42081 -0.2668 - 0.4208i
0.3593 +0.03731 0.3593 - 0.0373i -0.4004 - 0.2981i -0.4004 + 0.29811

Columns 5 through 6

0.0000 - 0.57741 0.0000 + 0.5774i
0.0000 + 0.0000i  0.0000 - 0.0000i
0.0000 - 0.57741 0.0000 + 0.5774i
0.0000 + 0.0000i 0.0000 - 0.00001
0.0000 - 0.5774i 0.0000 + 0.57741
0.0000 + 0.0000i  0.0000 - 0.0000i

lambda =

Columns 1 through 4

-0.2250 + 1.7141i 0 0 0
0 -0.2250 - 1.7141i 0 0
0 0 -0.0750 + 0.9991i 0
0 0 0 -0.0750 - 0.9991i
0 0 0 0




118  Vibration Simulation Using MATLAB and ANSYS

0 0 0 0
Columns 5 through 6
0 0
0 0
0 0
0 0
-0.0000 +0.0000i - 0
0 -0.0000 - 0.0000i
lambdad =

-0.2250 + 1.7141i
-0.2250 - 1.7141i
-0.0750 + 0.99911
-0.0750 - 0.9991i
-0.0000 + 0.00001
-0.0000 - 0.0000i

Note that the two eigenvalues which correspond to each of the three modes
are complex conjugates of each other, and that the real parts of the second and
third mode eigenvalues are all negative.

We did not specify the form of the eigenvalues, which in the most general
case can be complex, as in the second and third modes above. We will now
discuss the components of complex eigenvalues. We use the term A, to

describe the first complex eigenvalue of any of the three sets of eigenvalues
above. The term A, is used to describe the second complex eigenvalue of

the set, and the complex conjugacy of the two is stated as: A

nl >

. = An, , where

the “*” indicates a complex conjugate. The real and imaginary parts will be
defined using ¢, and w,_, , respectively:

nx >

xnl = cnl +j0)n1 (5 48)
7‘“2 = 7‘:1 =0, —jo,

See Figure 5.3 for graphical descriptions of the components of a complex
eigenvalue. The figure shows two complex conjugate eigenvalues (poles) in
the left half plane as “x” symbols. The real parts of the two eigenvalues are
the same and are given the symbol &, with the imaginary parts both having a
distance from the origin of ®, referred to as the damped natural frequency.
The radial distance from the origin to the poles is given by ®, and is referred
to as the undamped natural frequency. The angle between the imaginary axis -
and the line from the origin to the pole is used to define the amount of




Chapter 5 State Space Analysis 119

damping of the mode, referred to as {, the damping ratio or percentage of
critical damping. If =0, 6=0 and there is no damping, therefore

0=0,.

Im(s)

Re(s)

-

Figure 5.3: Complex eigenvalue (pole) nomenclature in complex plane.

Referring to Figure 5.3 for the definition of 0, the equation for calculating
for a mode from the real and imaginary components of the eigenvalue is:

€ =sin0

. L[ Re(h)
= sin [tan [Im(?») J] , (5.49)

el ()

5.8 Eigenvectors — Normalized to Unity

The section of code below reorders the eigenvectors from low to high
frequency and normalizes them. The normalization procedure is to divide
each eigenvector by its position state for mass 1, the first term in each
eigenvector.

% now reorder the eigenvalues and eigenvectors from low to high frequency,
g q Y.




120 Vibration Simulation Using MATLAB and ANSYS

% keeping track of how the eigenvalues are ordered in reorder the
% eigenvectors to match, using indexhz

[lambdaorder,indexhz] = sort(abs(imag(lambdad)}));

for cnt = 1:length(lambdad)

lambdao(cnt,1) = lambdad(indexhz(cnt)); % reorder eigenvalues
xmoé;,cnt) = xm(:,indexhz(cnt)); % reorder eigenvector columns
end
% now normalize the eigenvectors with respect to the position of mass 1, which
% will be set to 1.0

for cnt = 1:length(lambdad)
xmon1(:,cnt) = xmo(:,cnt)/xmo(1,cnt);

end

The eigenvectors, normalized such that the displacements of mass 1 are set to
1.0 are shown below as xmonl.

lambdao =

-0.0000 + 0.00001
-0.0000 - 0.00001
-0.0750 + 0.9991i
-0.0750 - 0.99911
-0.2250 + 1.7141i
-0.2250 - 1.71411

Xmo =
Columns 1 through 4

0.0000 - 0.5774i 0.0000 + 0.5774i 0.2886 - 0.4085i 0.2886 + 0.4085i
0.0000 + 0.0000i 0.0000 - 0.0000i 0.3865 +0.3190i 0.3865 - 0.3190i
0.0000 - 0.57741 0.0000 +0.57741 -0.0218 - 0.0123i -0.0218 +0.01231
0.0000 +0.0000i 0.0000 - 0.0000i 0.0139 - 0.0209i 0.0139 + 0.0209i
0.0000 - 0.5774i 0.0000 +0.5774i -0.2668 + 0.4208i -0.2668 - 0.4208i
0.0000 + 0.0000i 0.0000 - 0.0000i -0.4004 - 0.2981i -0.4004 + 0.2981i

Columns 5 through 6

-0.0567 - 0.19401 -0.0567 +0.1940i
0.3452 - 0.05351 0.3452 + 0.05351
0.0624 + 0.40291 0.0624 - 0.40291
-0.7046 + 0.0162i -0.7046 - 0.0162i1
-0.0057 - 0.2089i -0.0057 + 0.2089i




Chapter 5  State Space Analysis o 121

0.3593 +0.0373i 0.3593 - 0.0373i

xmonl =
Columns 1 through 4

1.0000 - 0.0000i 1.0000 + 0.0000i 1.0000 1.0000

0.0000 + 0.0000i 0.0000 - 0.0000i -0.0750 +0.9991i -0.0750 - 0.9991i
1.0000 - 0.0000i 1.0000 + 0.0000i -0.0050 - 0.0498i -0.0050 + 0.0498i
-0.0000 + 0.0000i -0.0000 - 0.0000i 0.0502 -0.0013i 0.0502 + 0.0013i
1.0000 - 0.0000i 1.0000 +0.0000i -0.9950 + 0.0498i -0.9950 - 0.0498i
0.0000 + 0.0000i 0.0000 - 0.0000i 0.0248 - 0.9978i 0.0248 + 0.9978i

Columns S through 6

1.0000 - 0.0000i 1.0000 + 0.0000i
-0.2250 + 1.7141i -0.2250 - 1.7141i
-2.0001 - 0.2630i -2.0001 + 0.2630i
0.9009 - 3.36911 0.9009 + 3.3691i

1.0001 + 0.2630i 1.0001 - 0.2630i
-0.6759 + 1.6550i -0.6759 - 1.65501

The six rows of each eigenvector are related to the six states, x, to x,, where
X,, X5, X5 are the displacement states and Xx,, X,, X, are the velocity states.

Each velocity row is equal to the displacement row associated with it times its
eigenvector, as can be seen by repeating (5.41) and differentiating it.

X.

1

At
Xni ©

5.50
A (xmiek't) ( )

ii
The tdof model has three degrees of freedom, so we should have three modes
of vibration. The first two columns of the eigenvector matrix define mode 1,
the third and fourth define mode 2 and the fifth and sixth columns define
mode 3. Like the two complex conjugate eigenvalues for each mode, the two
eigenvector columns for each of the modes are complex conjugates of each
other.

5.9 Eigenvectors — Magnitude and Phase Angle Representation

Another way of looking at the eigenvectors is to calculate the magnitude and
phase angle for each entry. The code for doing this follows.

% now calculate the magnitude and phase angle of each of the eigenvector
% entries

for row = 1:length(lambdad)




122 Vibration Simulation Using MATLAB and ANSYS

for col = 1:length(lambdad)
xmon 1 mag(row,col) = abs(xmon1(row,col});
xmonlang(row,col) = (180/pi)*angle(xmon 1 {row,col});
end
end
lambdao
Xmo
xmonl
xmonlmag

xmonlang

The magnitude and phase angles are:

xmonlmag =
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 1.0019 1.0019 1.7288 1.7288
1.0000 1.0000 0.0501 0.0501 2.0173 2.0173
0.0000 0.0000 0.0502 0.0502 3.4875 3.4875
1.0000 1.0000 0.9962 0.9962 1.0341 1.0341
0.0000 0.0000 0.9981 0.9981 1.7877 1.7877

xmonlang =
0 0 0 0 0 0
90.0000 -90.0000  94.2930 -94.2930  97.4782 -97.4782
0.0000 0.0000 -95.7723 95.7723 -172.5081 172.5081
90.0000  -90.0000  -1.4793 1.4793  -75.0299  75.0299
0.0000 0.0000 177.1334 -177.1334 14.7356  -14.7356
90.0000  -90.0000 -88.5736 88.5736 112.2138 -112.2138

We will see in Chapter 7 that undamped eigenvector oscillatory modes have
phases that are multiples of 90°. For the damped complex eigenvectors the
phases are slightly offset from being 90° multiples of each other.

5.10 Complex Eigenvectors Combining to Give Real Motions

Now that we have solved for the complex eigenvalues and eigenvectors, we
will discuss how we can have the system respond in only a single mode of
vibration by releasing the system with a particular set of initial conditions.
We will answer the following question:




Chapter 5 State Space Analysis 123

How does a mode that is described by complex eigenvalues and
cigenvectors give “real,” physically observable motions
(Newland 1989)?

For the n™ mode, the motion in that mode is defined as the sum of the motions
due to the two conjugate eigenvalues/eigenvectors for that mode, as shown in
(5.51). Substituting the complex conjugate value and collecting exponential
terms:

x(t)= exn‘txnl + ehztxnz
=ehi'x, +eMix),
- e(c:r,,,+jm,,|)txnl + e(%;-j‘%:)‘x:l - (5.51)
= 0! (ejm,..txnl + e—jmnltx:l)

= 2e™" Re(x,,)

The e'*'x, term represents a vector of magnitude |x_,| which is rotating

[

counter-clockwise at the rate of @, radians/sec. The e“'x term represents

a vector of magnitude lx:”‘ which is rotating clockwise at the rate of w,,

radians/sec. This counter-rotation is the key to understanding how the sum of
two complex numbers becomes real. Since the two counter-rotating
eigenvector terms are complex conjugates, their imaginary portions are of
opposite sign and as they rotate, the sum of the two results in only a real
component as the two imaginary portions cancel each other. See the Argand
diagram in the next section for a graphical representation.

The e®™" term is an exponentially decreasing scalar which multiplies the sum
of the two counter-rotating vectors. The G,, term is the real value of the
eigenvalue, and for a stable mode, with the poles in the left half of the s-plane,
the value is always negative. Thus, e is exponentially decreasing with a
time constant of 1/c,, .

For real modes, the poles are on the imaginary axis, so 6,, =0 and €' =1.

The two counter-rotating vectors are not attenuated in amplitude with time, so
the motion is undamped.

If the initial conditions for the system are set at one of the eigenvectors, the
system will respond in only that mode. For systems with complex modes,
initial conditions of both displacements and velocities of all the masses
must be set simultaneously in order for the system to respond only in that
mode. If the initial conditions for the system are set at any other value, the



124  Vibration Simulation Using MATLAB and ANSYS

resulting motion will be composed of a superposition of the motions of
several modes.

For undamped systems with normal modes, either the displacement or
velocity initial conditions can be set and the system will respond only in that
mode (see Chapter 7 for more details).

Equation (5.51) v;/ill be used in the MATLAB code for plotting the motion of
the system for the two oscillatory modes.

5.11 Argand Diagram Introduction

Since we are dealing with complex modes where different parts of the
structure reach their maximum and minimum positions at different times, we
cannot plot deformed mode shape plots as we did for the undamped model in
Chapter 3. The best way to visualize complex modes is by animating the
mode shape, allowing one to see the different parts of the structure moving in
time.

The use of an Argand or Phasor diagram is another way to visualize the
motion. It plots rotating eigenvectors of position and velocity in the complex
plane for each degree of freedom in the eigenvector and shows how the
complex conjugate eigenvector components add to create the “real” motion.

The normalized eigenvector matrix, xmonl, is repeated below. The first two
states, position and velocity of mass 1, dof z1, are highlighted in bold type for
the second mode of vibration.

Figure 5.4 shows Argand diagrams for the highlighted mode and states in the
eigenvector matrix below. All three plots are in the complex plane. The
upper left-hand plot shows the position and velocity eigenvector components
for the third column of the eigenvector matrix, where the position component
is 1+0j and the velocity component is —0.075+0.999j. The position
component plots from 0 to 1 on the real axis. Notice that the tip of the
velocity vector is slightly to the left of the imaginary axis. The ™' term
indicates that the position and velocity vectors are both rotating in the
counter-clockwise direction at a speed of ® radians/sec, starting from the
initial locations defined by the eigenvector components.



Chapter 5 State Space Analysis . 125
xmonl =
1.0000 1.0000 1.0000 1.0000
0.0000 + 0.0000i 0.0000 - 0.0000i -0.0750 +0.9991i -0.0750 - 0.9991i
1.0000 + 0.0000i 1.0000 - 0.0000i -0.0050 - 0.04981  -0.0050 + 0.0498i
0.0000 + 0.0000i 0.0000 - 0.0000i 0.0502 - 0.0013i 0.0502 + 0.0013i
1.0000 + 0.0000i 1.0000 - 0.0000i -0.9950 + 0.04981 -0.9950 - 0.0498i
0.0000 + 0.0000i 0.0000 - 0.0000i 0.0248 - 0.9978i 0.0248 + 0.9978i
1.0000 1.0000
-0.2250+ 1.71411  -0.2250 - 1.7141i
-2.0001 -0.26301  -2.0001 + 0.2630i
0.9009 - 3.3691i 0.9009 + 3.36911
1.0001 +0.26301  1.0001 - 0.2630i
-0.6759 + 1.6550i -0.6759 - 1.65501
Im Im
2T 2T Position
Velocity = = 1+0j
- 0.075+0.999j ] L
Ai e
ke i o——1Re
-2 -1 1 -1 M 1 2
J e‘j"’z'
-1 -+ | Position Velocity = -1
=1+0j - 0.075-0.999j
-2 -2 L
Im
2 —_——
1L .
i Counter-Clockwise
| | 4T
2 a4 - z;Re ‘
Imaginary R
Components
Canceﬁlﬁ N )
2= Real
Components
Add

Figure 5.4: Argand diagram explanation.

The upper right-hand plot is similar to the left-hand plot except that the fourth
column entries of the eigenvector matrix for the first two states are plotted and
the two vectors are rotating in the clockwise direction. Note that the real
components of the position and velocity components are the same as the third
column, but that the imaginary components are complex conjugates of each

other.



126  Vibration Simulation Using MATLAB and ANSYS

The lower plot illustrates the complex plane with both third and fourth
eigenvectors shown on the same plot after rotating through the angle w,t. At

any time “t,” the two counter-rotating position vectors can be added to give
the current position. At any time, the two imaginary components cancel out,
leaving only the sum of the two real axis components as the “real” position.
The same vector addition of the two counter-rotating velocity vectors will
give the “real” velocity.

For an undamped model, the lengths of the two original eigenvector
components stay the same. For the damped model, the lengths of all the
vectors decrease continuously with a time constant of 1/0, .

Looking at the Argand diagram above, which shows the “real” motion as
twice the real axis component of the vector, it is clear that the motion as a
function of time can also be written as:

x(t) = 2e™" |x,,|cos(ot+d,
(t) nt|COS(®E+0,;) (5.52)
=2e°" Re(x,,)
where the phase angle ¢,; is given by:
tan (9,;) = Im(z,,)/ Re(z,,) (5.53)

5.12 Calculating {, Plotting Eigenvalues in Complex Plane,
Frequency Response

This section of code calculates the percentage of critical damping for each of
the three modes, &, using (5.49).

% calculate the percentage of critical damping for each mode
zetal =0

theta2 = atan(real(lambdao(3))/imag(lambdao(3)));
zeta2 = abs(sin(theta2))

theta3 = atan(real(lambdao(5))/imag(lambdao(5)));
zeta3 = abs(sin(theta3))

plot(lambda,'’k*")

grid on

axis([-31-22])
axis('square’)

title('Damped Eigenvalues")
xlabel('real’)




Chapter 5

State Space Analysis

127

ylabel('imaginary")
text(real(lambdao(3))-1,imag(lambdao(3))+0.1,['zeta = ',num2str(zeta2)])
text(real(lambdao(5))-1,imag(lambdao(5))+0. 1 ,['zeta = ',num2str(zeta3)])

disp(‘'execution paused to display figure, "enter" to continue'); pause

Damped Eigenvalues
2 v - .
1 = |
! zeta ‘0.13015 5 |
15 ~~~~~~ 4 - - - l— - - - - = e = e w o o
| | i
o L _zetazooraesr, |
} i 1
Il 1 !
| ) |
10 e [ T T
E- I [ t
I t
R - o
©
£ I 1 t
= i 1 +
05 ----- T (T - - [l
| 1 i
] i 1
AF--=-=-- + - === i—= === H- - - -1
| | |
| I |
A5 - - - - - 4 = =~ [E
| I I
1 I * I
2 i 1 )
3 2 El 0 1
real

Figure 5.5: Plot of eigenvalues in complex plane for tdof model with c1 =0.1,c2 =0.2.

magnitude, db

magnitude, db

state space, z11, 233 db magnitude
0

state space, z21, 212, 223, z32 db magnitude

T T T [ 50 R [REEL
[~ RN | [ — e | [N
O——‘D 1L _l_ L o [+] I _ i LLidgl
| W ° (RN RN RN
I [N RN | [ .8 | e i [ REN
SO — + o A = e 2 BO0F -+ H - -
[N Lo g [ NN Eo
[ o @ R oo
A0 — 5T ST T AT g€ -100F v =7 mm - T O
[ ERER Vo ! Cor IR
150 L4 1 Lt _150\ L L LhILi) [ WS
10" 10° 10’ 10" 10° 10'
state space, z31, z13 db magnitude state space, z22 db magnitude
50 R [RRAA 50 [RERAEEILL R
RLRARIL R (IR
ol —-13 o oF - L (NR D I T WA RT
I ° [N ; Lhn
ot 8 AR [
BOF - + 1A+t 2 B0~ -t At S e Rt
[ R S’ ( o Pt
R @ RN Vo
AR~ TN T T T T € -100F — v 5y mm - T LT
Lo RN R
_1501 L ]l\JHHo , _1501 L l\IH{HD 1 L1t ,
10 10 10 10 10 10

frequency, rad/sec

frequency, rad/sec

Figure 5.6: Frequency response magnitude plots.




128  Vibration Simulation Using MATLAB and ANSYS

state space, z11, z33 phase state space, z21, 212, 223, z32 phase

I T T TTTT0T b [N -150 IREEIL i N

N R AR ol

T P N N N B I A BT

ki \\H\H’\IIHHH
© i e e s
o -250}'*+*\ﬂ+ HrH = = e e
8 | IBREEEE R
5 i L RN

|
|
|
i |
800 - - 557 T T T
|
L

| Lol
10" 10° 10’
state space, z22 phase
200 T [ e e O NN S A I AR
[ AR i i b
100 i LLtdiL 50k — L I LILily/ S LUl
g’ [ I R R g’ i Loy [ B R
© | LI AN IR R b © I et [ R R
I OF — + -1 4 +1+1H N—l— + HI+1+ @ =100 — + —~ I+ - Y= El
2 I [N 8 Loy (RN
s [ ERERN! ! S [ IRRRIRL
QJOO"T’WT\TW”F’ 11T °'150”T’\7T\’w,"’m
| Lo ] Pl *‘A_L—H’T/\ |

_200 L Lotllesly 1 ST _200 ] 1 Lol
10" 10° 10' 10" 10’ 10’

frequency, rad/sec frequency, rad/sec

Figure 5.7: Frequency response phase plots.

The magnitude and phase frequency response plots for the system with
cl = 0.1 and ¢2 = 0.2 are shown above, using tdofss.m to plot. Note the
significant attenuation of the resonances with zetas of 7.5% and 13% for
modes 1 and 2, respectively. (Note: This amount of damping is very difficult
to obtain in most practical structures without the use of additive damping.)

5.13 Initial Condition Responses of Individual Modes

The code below calculates the initial condition response for the oscillatory
(not rigid body) second and third modes of the system when started with
initial conditions defined by the appropriate eigenvector. Equation (5.51) is
repeated below to show the form of the equation for x(t) that is used in the
code.

x(t) = e“nlt ejmnltx + e‘j“\.ztx
( ) G, t( ot " Oy it njz t (554)
=e™ (e IX111)-{-e o (e " an)

The real and imaginary components of the eigenvalues are calculated to give
o and ® in the equation above. The real and imaginary displacements of

each of the three masses are then calculated for both oscillatory modes for a
time period of 15 seconds.

% calculate the motions of the three masses for all three modes - damped case

t=0:12:15;




Chapter 5  State Space Analysis

129

%

%

%

sigmall = real(lambdao(1)); % sigma for first eigenvalue for mode 1
omegall = imag(lambdao(1)); % omega for first eigenvalue for mode 1

sigmal2 = real(lambdao(2)); % sigma for second eigenvalue for mode 1
omegal2 = imag(lambdao(2)); % omega for second eigenvalue for mode 1

sigma21 = real(lambdao(3)); %
omega2l = imag(lambdao(3)); %

oS &

sigma for first eigenvalue for mode 2
omega for first eigenvalue for mode 2

sigma2? = real(lambdao(4)); % sigma for second eigenvalue for mode 2

omega2?2 = imag(lambdao(4)); %

S

omega for second eigenvalue for mode 2

sigma31 = real(lambdao(5)); % sigma for first eigenvalue for mode 3
omega31 = imag(lambdao(5)); % omega for first eigenvalue for mode 3

sigma32 = real(lambdao(6)); % sigma for second eigenvalue for mode 3
omega32 = imag(lambdao(6)); % omega for second eigenvalue for mode 3

motion of three masses for mode 1

z111r = exp(sigmall*t). *(exp(i*omegal 1 *t)*xmon1(1,1));
z112r = exp(sigmal2*t).*(exp(i*omegal 2*t)*xmon1(1,2));

z121r = exp(sigmal 1*t).*(exp(i*omegal 1 *t)*xmon1(3,1));
z122r = exp(sigmal2*t).*(exp(i*omegal 2*t)*xmon1(3,2));

z131r = exp(sigmall *t).*(exp(i*omegal 1 *t)*xmon1(5,1));
z132r = exp(sigmal2*t).*(exp(i*omegal 2*t)*xmon1(5,2));

motion of three masses for mode 2

721 1r = exp(sigma2 1 *t).*(exp(i*omega2 1 *t)*xmon1(1,3));
2212r = exp(sigma22*t).*(exp(i*omega22*t)*xmon1(1,4));

7221r = exp(sigma21*t).*(exp(i*omega2  *t)*xmon1(3,3));
7222r = exp(sigma22*t).*(exp(i*omega22*t)*xmon1(3,4));

723 1r = exp(sigma21*t).*(exp(i*omega2 | *t)*xmon1(5,3));
z232r = exp(sigma22*t).*(exp(i*omega22*t)*xmon1(5,4));

motion of three masses for mode 3

z311r = exp(sigma3 1*t).¥(exp(i*omega3 1 *t)*xmon1(1,5));
z312r = exp(sigma32*t).*(exp(i*omega32*t)*xmon1(1,6));

z321r = exp(sigma31*t).*(exp(i*omega3 1 *t)*xmon1(3,5));
z322r = exp(sigma32*t).*(exp(i*omega32*t)*xmon1(3,6));

233 1r = exp(sigma3 1*t).*(exp(i*omega3 1 *t)*xmon1(5,5));
7332r = exp(sigma32*t).*(exp(i*omega32*t)*xmon1(5,6));

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

mass 1
mass 1

mass 2
mass 2

mass 3
mass 3

mass 1
mass 1

mass 2
mass 2

mass 3
mass 3

mass 1
mass |

mass 2
mass 2

mass 3
mass 3




130 Vibration Simulation Using MATLAB and ANSYS

5.14 Plotting Initial Condition Response, Listing

The code listing below is to plot various combinations of real and imaginary
components of the displacements of the three masses when released in states
which match the eigenvectors.

% plot real and imaginary motions of each mass for the two complex conjugate
% eigenvectors of mode 2

plot(t,real(z211),’k-",t,real(z212),'’k+-'t,imag(z2 11),'’k.-',t,imag(z212),'ko-")
title('non-prop damped real and imag for z1, mode 2')
legend('real’,'real','imag’,'imag")

xlabel('time, sec')

axis([0 max(t) -1 1])

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

plot(t,real(z221),'k-"t,real(z222),'k+-',t,imag(z221),'’k.-',t,imag(z222),'ko-")
title('non-prop damped real and imag for z2 mode 2")
legend('real','real','imag’,'imag")

xlabel('time, sec')

axis([0 max(t) -1 1])

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

plot(t,real(z231),'k-",t real(z232),’k+-'t,imag(z231),'k.-,t,imag(z232),’ko-")
title('"non-prop damped real and imag for z3 mode 2)
legend('real','real’,'imag','imag")

xlabel('time, sec')

axis([0 max(t) -1 1])

grid on

disp(‘execution paused to display figure, "enter” to continue’); pause

plot(t,real(z211+2z212),'k-"t,real(z221+2222),k+-'t real(z23 1 +2232),’k.-")
title('non-prop damped, z1, z2, z3 mode 2')

legend('mass 1','mass 2','mass 3")

xlabel('time, sec')

axis([0 max(t) -2 2])

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause
% plot subplots for notes

subplot(2,2,1)
plot(t,real(z211),'k-",t,real(z212),k+',t,imag(z211),'’k.-"t,imag(z212),’ko-"}
title('non-prop damped real and imag for z1, mode 2")
legend('real','real','imag','imag")

axis([0 max(t) -1 1])

grid on




Chapter 5  State Space Analysis 131

%

subplot(2,2,2)

plot(t,real(z221),'k-" t real(z222),’k+,t,imag(z221),k.-'t,imag(2222),'’ko-")
title('non-prop damped real and imag for z2 mode 2")
legend('real','real','imag','imag")

axis([0 max(t) -1 1])

grid on

subplot(2,2,3)
plot(t,real(z231),%k-"t,real(z232),'k+'t,imag(z231),'’k.-',t,imag(2232),'’ko-")
title(non-prop damped real and imag for z3 mode 2")
legend('real','real’,'imag','imag")

xlabel('time, sec’)

axis([0 max(t) -1 1])

grid on

subplot(2,2,4)

plot(t,real(z2 1 1+2212),'k-"t,real(z221+2222),'’k+-'t real(z231+2232),'k.-)
title('non-prop damped, z1, 22, z3 mode 2')

legend('mass 1','mass 2','mass 3')

grid on

xlabel('time, sec')

axis([0 max(t) -2 2])

disp(‘execution paused to display figure, "enter" to continue’); pause
subplot(1,1,1)
plot mode 3

plot(t,real(z311),'%k-"t,real(z312),'’k+-",t,imag(z311),'k.-",t,imag(z312),’ko-")
title('non-prop damped real and imag for z1, mode 3')
legend('real','real’,'imag','imag’)

xlabel('time, sec')

axis([0 max(t) -1 1])

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

plot(t,real(z321),k-",t ,real(z322),'’k+-',t,imag(z321),’k.-",t,imag(z322),'ko-")
title('non-prop damped real and imag for z2 mode 3")
legend('real','real','imag','imag")

xlabel('time, sec')

axis([0 max(t) -2 2])

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

plot(t,real(z331),'k-',t,real(z332),’k+-',t,imag(z331),’k.-',t,imag(z332),’ko-")
title('non-prop damped real and imag for z3 mode 3)
legend(‘real','real’,'imag','imag")

xlabel('time, sec")

axis([0 max(t) -1 17)

grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z311+2312),'’k-"t,real(z321+2322),k+-'t,real(z331+2332),'k.-"




132 Vibration Simulation Using MATLAB and ANSYS

title('non-prop damped, z1, z2, z3 mode 3')
legend('mass 1','mass 2','mass 3')
xlabel('time, sec')

axis([0 max(t) -4 4])

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause
% plot subplots for notes

subplot(2,2,1)
plot(t,real(z311),'’k-"t,real(z312),'k+-',t,imag(z311),'k.-',t,imag(z312),'ko-")
title('non-prop damped real and imag for z1, mode 3")
legend('real','real’,'imag','imag")

axis([0 max(t) -1 1])

grid on

subplot(2,2,2)
plot(t,real(z321),'k-",t,real(z322),’k+-',t,imag(z321),'k.-',t,imag(z322),’ko-")
title('non-prop damped real and imag for z2 mode 3")
legend('real’,'real’,'imag','imag")

axis([0 max(t) -2 2])

grid on

subplot(2,2,3)
plot(t,real(z331),'k-',t,real(z332),'k+-',t,imag(z331),'k.-",t,imag(z332),'ko-")
title('non-prop damped real and imag for z3 mode 3')
legend('real’,'real','imag','imag")

xlabel('time, sec")

axis([0 max(t) -1 1])

grid on

subplot(2,2,4)
plot(t,real(z311+z312),’k-"t,real(z321+2322),'k+-'t,real(z331+2332),'k.-")
title('non-prop damped, z1, z2, z3 mode 3')

legend('mass 1','mass 2','mass 3')

xlabel('time, sec')

axis([0 max(t) -4 4])

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

5.15 Plotted Results: Argand and Initial Condition Responses

The next four sections plot Argand and initial condition transient responses
for the two oscillatory modes, illustrating the canceling of the imaginary
components and the doubling of the real components.




Chapter 5  State Space Analysis

133

5.15.1 Argand Diagram, Mode 2

Im Im
2 2
Pos=1+0j Pos=1+(j i
Vel = -.075 + 999 VELOCITY Vel =-.075 - 999
Mode 2 1
. ol dof 1
V\ POSITION POSITION
I ] TN i 1 ~ |
t B | Re I b1 | Re
-2 -1 1 2 -2 -1 l/ 1 2
jar
4 Im 4 e
N 2T / VELOCITY
-2 14 -2
I t {Re
-2 -1 2
-1 4+
Im Pos = -.0050 + .0498]
0.10 24 010 | Vel=-0502+.0013
Pos = -.0050 - .0498]
= i POSITION
Vel =.0502-.0013] | oos | ; Mode 2 0.05 5~
e’ dof 2
V\ VELOCITY VELOCITY
— ——Re — of—1Re
-0.10  -0.05 l 005 010 -0.10  -0.05 A/ 005 010
-0.05 - 010 tm -005 1€
POSITION
-0.10 - 0.05 -010 -
- Re
-010  -0.05 0.10
-0.05
Im im
Pos=.995+ 2 -0.10 2T .9978j
.0498j
Vel = .0248 - 9978} . Mode 2 | JVELOCITY
ia dof 3 f
€
POSITION V\ POSITION
; - t {Re | f— f {Re
-2 -1 1 -2 -1 A/ 1
jar
Im €
R o a4+
ELOCITY /
-2 1=+ -2 ==
—* Re
2 - 2 Complex Mode
a4 Argand Diagrams
-2 J_

Figure 5.8 Argand diagram for three degrees of freedom for mode 2, complex damping.




134  Vibration Simulation Using MATLAB and ANSYS

5.15.2 Time Domain Responses, Mode 2

The plots below show the motions of the masses decreasing due to the
damping. Once again, the imaginary components are out of phase and cancel
each other, leaving only twice the real component as the final motion. Unlike
the undamped case, the three masses do not reach their maximum or minimum
positions at the same time. Since the damping is quite small, it is hard to see
on the plots the small differences in times at which the maxima and minima
are reached. Note that the unequal damping values for the two dampers make
the center mass have a small motion in mode 2. We showed in Chapter 3 that
for the undamped case mass 2 has no motion for mode 2.

non-prop damped real and imag for z1, mode 2 non-prop damped real and imag for z2 mode 2
1 1

non-prop damped, z1, z2, z3 mode 2
2

: — mass 1
: —— mass 2
13- -%°7 "\ | = mass3
%)
Y/
0+
| \
|
B S e | B
| I
| t
| i
2 L |
0 5 10 15
time, sec time, sec

Figure 5.9: Initial condition transient response for mode 2.



Chapter 5 State Space Analysis

135

5.15.3 Argand Diagram, Mode 3

Mode 3
dof 1

Im
4
Pos=1+0j
Vel =-225 + 1.714j
VELOCITY
1 |V ) ‘,\,\IPO.SITIQN
| S — D——1—1Re
-4 -2 2 4
-2
-4
lm
F's

Pos = -2.000-.2630j
Vel =.9009 -3.369] | 2

POSITION

-4

Pos = 1.0001 +.263j
Vel = - 676+1.655j

Mode 3
dof 3

POSITION

Re

Pos=1+0j
Vel = -.225 - 1.714j

POSITION

-4

Pos = -2.000+.2630j
Vel = .9009 + 3.369j

Pos = 1.0001 -.263]
Vel = -.676-1.655)

POSITION

-4

Complex Mode
Argand Diagrams

Figure 5.10: Argand diagram for three degrees of freedom for mode 3, complex damping.




136  Vibration Simulation Using MATLAB and ANSYS

5.15.4 Time Domain Responses, Mode 3

Compared to the responses for the mode 2 in Figure 5.9, the response for
mode 3 damps out faster for two reasons.
versus 7.5%, as shown in Figure 5.5. Secondly, even if zeta were the same for
the two modes, the higher frequency of mode 3 will create higher velocities,

First, it has higher

damping, 13%

hence higher damping from the velocity-dependent damping term.

non-prop damped real and imag for z1, mode 3

| [— real
! —— real
i —e— imag

- imag
| & Imag ,

|
1

. J — real
e ! —— real
! -1 -~ imag
—- imag

time, sec

15

non-prop damped real and imag for z2 mode 3

— real

|
—+ real |

—e— imag
—©- imag |

time, sec

Figure 5.11: Initial condition transient response for mode 3.



Chapter 5 State Space Analysis 137

Problems
Note: All the problems refer to the two dof system shown in Figure P2.2.
P5.1 Write the damped equations for the two dof system in state space form,
both expanded and matrix. Show the input matrix B for a step force of
magnitude 1 to mass 1 and magnitude —2 for mass 2. Show the output matrix
C for the following outputs:

a) Position of masses 1 and 2

b) Position and velocity of mass 1

¢) 2 times velocity of mass 1 plus 3 times the position of mass 2

P5.2 Set up the eigenvalue problem for the damped two dof problem as in
(5.46).

P5.3 (MATLAB) With m, =m, =m=1, k, =k, =k =1, modify the code
in tdof non_prop_damped.m for the two dof damped model with
¢, =¢, =0.1 and:

a) list the complex eigenvalues, real and imaginary form

b) list the complex eigenvalues, magnitude and phase angle form

¢) normalize the eigenvectors for unity values of the position of mass 1
and hand plot the Argand diagrams for the system

d) list the percentage of critical damping for each mode

e) plot the complex eigenvalues in the s-plane and correlate the three
different descriptions in (a), (b) and (d)

P54 (MATLAB) Set m;, =m, =m=1, k, =k, =k =1 and plot the initial
condition responses for the system in initial conditions which match the two
damped eigenvectors.

P55 Set m =m,=m=1, k =k, =k=1 and hand plot the Argand
diagrams for modes 1 and 2.



CHAPTER 6

STATE SPACE:
FREQUENCY RESPONSE, TIME DOMAIN

6.1 Introdu;tion — Frequency Response

This chapter will begin with the state space form of the equations of motion.
We will use Laplace transforms to define the transfer function matrix. Next
we will solve for the closed form transfer function matrix of the undamped
tdof model using a symbolic algebra program and compare the answer with
the solution presented in Chapter 2. MATLAB code will be used to set up
frequency response calculations, using the full system matrix which allows the
user to define damping values.

6.2 Solving for Transfer Functions in State Space Form Using Laplace
Transforms

Starting with the complete set of state space equations: ‘

Xx=Ax + Bu

6.1
y=Cx+Du 6.1

Ignoring initial conditions to solve for steady state frequency response, take
the matrix Laplace transform of the state equation and solve for x(s)

(Appendix 2):

| sIx(s) = Ax(s) + Bu(s) (6.2)

(sI — A)x(s) = Bu(s) (6.3)
x(s) = (s = A)™" Bu(s) (6.4)

Substituting into the Laplace transform of the output equation:

y(s) = C (sI — A)™ Bu(s) + Du(s) (6.5)

Solving for the transfer function % :
u(s



140  Vibration Simulation Using MATLAB and ANSYS

Y_(S)_=C(SI—A)—1B+D (6.6)
u(s)

Checking consistency of sizes

nx1 = (nxn)x(nxn)x(nxl) + (nx1) ©67)

= nxl

Letting m, =m, =m, =m, k =k, =k, =k, ¢, =c, =0 and rewriting the
matrix equations of motion to match the original undamped problem used in
Section 2.4.3 allows calculation of results by hand. The MATLAB code
which follows, however, will allow any values to be used for the individual
masses, dampers and stiffnesses.

1 0 0 0 0 0]
01 0 00O
001000
sI-A)=s
0 00100
0 00 010
00000 1
[0 1 0 0 0 0 ]
ook S o o
m, m, m, m,
0 0 0 1 0 0
-l k¢ Ak +ky) (e te) kg
m, m, m, m, m, m,
0 0 0 0 0 1
o o X & ko
L m, m, m, m,




State Space: Frequency Response, Time Domain

Chapter 6 141
[ s -1 0 0 0 0
Kk gL —k % 0 0
m, m; m, m,
0 0 ~1 0 0
= —_kI - (k, +k,) s+(cl+c") -k, —c,
m, m, m, m, m, m,
0 0 0 0 S -1
o o0 -k = ke
L m; m; m, m,; |
(s =1 0 0 0 O]
5 S :-IE 6 0 O
m m
0O 0 s -1 0 O
=|_ _ 6.8
koo Xk ko 69
m m m
0O 0 0 0 s -1
0 0 :l-(— 0 k s
L m m _

Here, in order to develop the entire 3x3 transfer function matrix, we will use a

MIMO representation of B and C.

Taking B equal to the 6x3 matrix gives transfer functions for all three forces:

[0

1/m,

[==TN == BN =

0 0

0 0

0 0
l/m, 0

0 0

0 1/m,|

(6.9)

Taking C equal to the 3x6 matrix below gives the three displacement transfer
functions as outputs:



142 Vibration Simulation Using MATLAB and ANSYS

100000
c={0 01000 (6.10)
0000T10

6.3 Transfer Function Matrix

Now that we have the terms required, we can substitute into the equation for
the transfer function matrix:

YO _ ¢ sI-A)'B+D (6.11)
u(s)

We have an expression for (sI — A) above, but need to have its inverse. -

Using a symbolic algebra program to calculate the inverse even for this
relatively small 3x3 problem yields a result which is too lengthy to be listed
here in its entirety. To show that the calculation by hand really works,
however, we will expand the equation above symbolically and then substitute
the appropriate terms from the inverse to give the results for several of the

transfer functions. We will refer to the (sI — A)™' matrix by the notation
“sia” and expand it as follows:

&=C(SI—A)_IB
u(s)

siai;, siai,, siai,, siai, sial,; siai,
siai,, siai,, siai,, siai,, siai,; siai,
siai,, siaiy, siai;; siaiy,, siai,; siai

siai,, siai,, siai,, slai, siai,; siai,

Il
=
(=R I -
(=R
o o @
—_—0 O
o O <O

siai;, siai;, siaiy; siai;, siai;; siaig

| sial,, sialg, siaig sialg slaig  Siaig |

0o 0 0]
/m 0 0
0 0 0
0 Um 0
0 0 0

0 0 1/m)




Chapter 6  State Space: Frequency Response, Time Domain 143

[0 o0 o
o o o o of/m 00
siai,, siai,, siai,, siai, siai; siai; 0 0
=|siai;, siai,, siai;; siai,, siaiy; siaiy
. . .. . . . 0 1/m O
siai;, siai;, siai;; siai;, siaig; siaig 0 0 0
| 0 0 1/m]
siai;,, /m siai,/m siai,/m
=|siai,, /m siai,, /m siai,;/m (6.12)

siai;, /m siaig, /m siai,, /m

Listing the values for the siai,, terms used above from the symbolic algebra
solution:

' siai,, = siai,, = (m’s* +3m’ks’ + mk”)/Den
siai,, = siai,, = siai,, = siai,, = (m’ks’ + mk”)/Den
siai,, = (m’s* +2m’ks” + mk’)/ Den

siai;, = siai,, = mk’/Den
where Den = s (m’s* + 4m’ks” + 3mk?)
(6.13a-¢)

[Pt

Dividing each of the above terms by “m” and presenting in the transfer
function matrix form of (2.61):

(m*s* +3mks? +k?) (mks® +k%) 'S
z, (mks® +k?) (m?s* +2mks” + k%) (mks® +k?) F
z, | = 'S (mks® +k?) (m?s* +3mks?® +k?) E
z, s’ (m’s* + 4m’ks” +3mk? ) F,

(6.14)

The two derivations are identical.



144  Vibration Simulation Using MATLAB and ANSYS

6.4 MATLAB Code tdofss.m — Frequency Response Using State Space
6.4.1 Code Description, Plot

The four distinct transfer functions for the default values of m, k and ¢ are
plotted using MATLAB in tdofss.m, listed below. The four plots are
displayed in Figure 6.1. The A, B, C and D matrices shown in (5.17a) are
used as inputs to the program. A MIMO state space model is constructed and
the MATLAB function bode.m is used to calculate the magnitude and phase
of the resulting frequency responses. As described in the code, the resulting
frequency response has dimensions of 6x3x200, where the “6” represents the
6 outputs in the output matrix C, the “3” represents the three columns of the
input matrix B and the “200” represents the 200 frequency points in the
frequency vector. The desired magnitude and phase can be extracted from the
6x3x200 matrix by defining the appropriate indices. The defaulit values of ci
and c2 are zero.

state space, z11, 233 db magnitude state space, 221, 212, 223, z32 db magnitude
50 —

i T TOTTTTTT 50‘ oIl I [HEARL
SRR . [T P i | [REERE
i ~
a QgL_120 1L I_cLiai a Op--J w_ A Lo
k-] : “\V‘WN\% ° RN L
@ b o ] (IR ! L
E B0 — A I - b e E BO- -+ At - - e
g [ RN o ‘g CoLeinn | |
@ Lot R @ R R
€100 - 77 mn- o rnTm EC0F - s rmn T T mTm
! [ (R [N b
_150’ 1 Lt LITil 1 Lo LB _150 i 1L " L1 1Lil
10" 10° 10’ 10" 10° 10'
state space, z31, 213 db magnitude state space, z22 db magnitude
50 BRI (R 50 R R
R [RNEA] o
a 0 10 - LLididl a Lo+ 3 L AN L L
° o R 8 0 [BEEENN ) Lo
g R N T L] [ERETIN (I
S B0F -+ -t - - Fit i 3 BOE — 4 A A IHIH - i E I
E [N | [ [N RN
3 R | © RN IR
€100 — 7o mn T T TR € -100F — 7 55T mn T T T ST
R RN [N Lorai
_150 L [ 1 HE _150 1 AN 1 | EEEEL
10" 1’ 10' 10" 10° 10'
frequency, rad/sec frequency, rad/sec

4Figure 6.1: Four distinct frequency response amplitudes.

6.4.2 Code Listing

% tdofss.m state-space transfer function solution of tdof undamped model using
% state-space matrices directly and the bode command

clf;

legend off;

subplot(1,1,1);




Chapter 6  State Space: Frequency Response, Time Domain

145

%

%

%

%

%

%

clear all;
define the values of masses, springs, dampers and Forces

ml = [;
m2=1;
m3=1;

¢l = input(input value for c1, default 0, ... ');

if (isempty(cl))
cl=0;

else

end

c2 = input('input value for c2, default 0, ... *);

if (isempty(c2))

c2=0;

else

end

kl=1,
k2=1;
Fl1=1;
F2=1;
F3=1;

define the system matrix, a

a=[ 0 1 0 0 0 0
k1/ml -cl/ml k1/ml cl/ml 0 0
0 0 0 1 0 0
kl/m2 cl/m2  -(k1+k2)m2 -(cl+c2)/m2 k2/m2 c2/m2
0 0 0 0 0 1
0 0 k2/m3 c2/m3 -k2/m3  -c2/m3];

define the input matrix, b, a 6x3 matrix

b=[ 0 0 0
Fi/ml 0 0
0 0 0
0 F2m2 O
0 0 0
0 0 F3/m3];

define the output matrix, c, the 6x6 identify matrix
¢ = eye(6,6);

define the direct transmission matrix

d=0;

solve for the eigenvalues of the system matrix




146  Vibration Simulation Using MATLAB and ANSYS

[xm,omega] = eig(a);

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the logl0 value as limits, i.e. -1 is 10°-1 = 0.1 rad/sec, and 1 is
% 10”1 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,200);

% use the "ss" function to define state space system for three inputs, forces at
% masses 1, 2 and 3 and for all 6 states, three displacements and three velocities

sssys = ss(a,b,c,d);

% use the bode command with left hand magnitude and phase vector arguments
% to provide values for further analysis/plotting

% the mag and phs matrices below will be 6x3x200 in size

% the appropriate magnitude and phase to plot for each transfer function

% are called by appropriate indexing

% first index 1-6: zl zldot z2 z2dot z3 z3dot

% second index 1-3: F1 F2 F3

% third index 1-200: all frequency points, use ":"

[mag,phs] = bode(sssys,w);

z11mag = mag(1,1,:);
zl 1phs = phs(1,1,:);

z21mag = mag(3,1,:);
72 1phs = phs(3,1,:);

z31mag = mag(5,1,:);
z31phs = phs(5,1,:);

z22mag = mag(3,2,});
z22phs = phs(3,2,:);

% calculate the magnitude in decibels, db
z11magdb = 20*log10(z1 Imag);
z21magdb = 20*log10(z2 1 mag);
z31magdb = 20*log10(z3 1mag);
z22magdb = 20*log10(z22mag);
% plot the four transfer functions separately, in a 2x2 subplot form
subplot(2,2,1)
semilogx(w,z1 Imagdb(1,:),'’k-")
title('state space, z11, z33 db magnitude')
ylabel('magnitude, db")

axis([.1 10 -150 50])
grid




Chapter 6  State Space: Frequency Response, Time Domain 147

subplot(2,2,2)

semilogx(w,z2 1magdb(1,:),’k-")

title('state space, 221, z12, 223, z32 db magnitude')
ylabel('magnitude, db")

axis([.1 10 -150 507)

grid

subplot(2,2,3)

semilogx(w,z3 Imagdb(1,:),’k-")
title('state space, z31, z13 db magnitude')
xlabel('frequency, rad/sec')
ylabel('magnitude, db'")

axis([.1 10 -150 507)

grid

subplot(2,2,4)
semilogx(w,z22magdb(1,:),’k-")
title('state space, z22 db magnitude')
xlabel('frequency, rad/sec')
ylabel('magnitude, db'")

axis([.1 10 -150 50])

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

subplot(2,2,1)
semilogx(w,z11phs(1,:),’k-"
title('state space, z11, z33 phase')
ylabel('phase, deg')

Y%axis([.1 10 -400 -1507)

grid

subplot(2,2,2)
semilogx(w,z21phs(1,:),'’k-")

title('state space, z21, z12, 223, z32 phase')
ylabel('phase, deg')

Yeaxis([.1 10 -400 -150])

grid

subplot(2,2,3)
semilogx(w,z31phs(1,:),’%k-")
title('state space, z31, z13 phase')
xlabel('frequency, rad/sec')
ylabel('phase, deg')

Yaxis([.1 10 -400 -150])

grid

subplot(2,2,4)
semilogx(w,z22phs(1,:),’k-")
title('state space, z22 phase')
xlabel('frequency, rad/sec')
ylabel('phase, deg')
Yeaxis([.1 10 -400 -1507)
grid

disp(‘execution paused to display figure, "enter” to continue'); pause




148  Vibration Simulation Using MATLAB and ANSYS

6.5 Introduction — Time Domain

Starting with the equations of motion in state space, we will use Laplace
transforms to discuss the theoretical solution to the time domain problem. We
will define and discuss two methods of calculating the matrix exponential.
Then we will use a sdof forced system with position and velocity initial
conditions to illustrate the technique. The closed form solution for our tdof
example problem with step forces applied to all three masses and with
different initial conditions for each mass is too complicated to be shown so we
will use only MATLAB for its solution.

6.6 Matrix Laplace Transform — with Initial Conditions

We start with the state equations in general form, (6.1). Taking the matrix
Laplace transform of a first order differential equation (DE) with initial
conditions (Appendix 2):

L{x(t)} = sx(s) — x(0)

6.15
2{x(t)} = x(s) 6.13)

Taking the matrix Laplace transform of (6.1) and solving for x(s):

sx(s) — x(0) = Ax(s) + Bu(s)
(sI — A)x(s) = x(0) + Bu(s) (6.16a,b,c)
x(s) = (sI = A) "' x(0) + (sI — A)"'Bu(s)

Solving for the output vector y(s):

y(s) = Cx(s) ) . 6.17)
=C (sl - A)" x(0) + C(I — A)"'Bu(s)

The input matrix B and output matrix C are familiar from earlier state space
presentations. There is a new term in the equation for the Laplace transform

of y(s), the term (sI — A)™".

There are many methods of calculating the inverse (sI — A)™" (Chen 1999).

If the problem is small, for example 2x2, the inverse can be handled in closed
form. Then y(s) can be back-transformed term by term to get the solution in
the time domain, as we shall see in the example in the next section.



Chapter 6  State Space: Frequency Response, Time Domain 149

For another solution method it is useful to recall the geometric series
expansion below, for |r| <1:

%=1+f+r2+r3+... (6.18)
bt §

Expanding (sI — A)™" with the series expansion analogy above, the inverse
results in the infinite series in (6.19).

» - ‘2 3
(T—A)' =—" S 1[ A A A

sl-A ; A

6.7 Inverse Matrix Laplace Transform, Matrix Exponential

Now that we have the inverse in series form, it is easy to back-transform to
the time domain, term by term. We introduce two new terms, ®(t), the
inverse Laplace transform of (sI — A)" which equals e*', the matrix
exponential.

o(t) = £ {(s1-A)"]

2 3
=£"{£+AZ+A—+A—+..}

s s $ &

(A" (ar)

=T+ At +——+——+
2! 3!

(6.20)

- eAt

6.8 Back-Transforming to Time Domain

Now that the form of the matrix exponential is known, we can back-transform
the entire equation of motion, from (6.16c):

27(x(s)) =2 [(sT - AY" x(0) + (T — A)'Bu(s) | 6.21)

The result is:



150 Vibration Simulation Using MATLAB and ANSYS

x(t) = e* x(0) + [ e*“ P Bu(t)dr (6.22)

The first term in (6.22) is the response due to the initial condition of the state
and the second term is the response due to the forcing function. The second
term is the convolution integral, or Duhamel integral, and results from
back-transforming the product of two Laplace transforms.

6.9 Single Degree of Freedom System — Calculating Matrix Exponential
in Closed Form

Calculating the matrix exponential in closed form for greater than a 2x2
matrix is difficult without the aid of a symbolic algebra program. Even with
the program the result can be quite complicated.

A simple, rigid body example will be used to demonstrate how a matrix
exponential and transient response are calculated.

We will use the system in Figure 6.2, a mass with position and velocity initial
conditions and a step force applied.

Figure 6.2: sdof system with initial conditions and step force applied.
6.9.1 Equations of Motion, Laplace Transform
Start with the equation of motion:

mz =F (6.23)

Defining the states:

(6.24)



Chapter 6  State Space: Frequency Response, Time Domain 151

Defining derivatives and inserting the value for acceleration:

X, =

(6.25)

X, =

g |m X

The above can be written in matrix form, recognizing that F/m is the
acceleration and applying a unity magnitude step:

0
I R T (6.26)
x| [0 0x, [—] '
m
Defining the system matrix:

|:0 1i| '
A=
00 (6.27)

Taking the inverse of the (sI — A)™ term:

1
S (Ts o] o 1N s 1T |5 &

5

w2 | —

(=4

6.9.2 Defining the Matrix Exponential — Taking Inverse Laplace
Transform

Using the table of inverse Laplace transforms from Appendix 2 yields the
matrix exponential.

' 1
s s 1t
At = 21 s S =|: i| (6.29)

<
[



152  Vibration Simulation Using MATLAB and ANSYS

6.9.3 Defining the Matrix Exponential - Using Series Expansion

A Power Series Expansion can also be used to find the matrix exponential for
this simple example because higher powers of At go to zero quickly:

At) (At
e‘“=I+At+(—)—+u+
2! 31

1 0] Jo t] [0 O
= + + + (all other terms zero) (6.30)
10 1 00 0 0

[t
1o 1

This is the same solution as (6.29).

6.9.4 Solving for Time Domain Response

Thus, the general solution for x(t) as a function of time becomes:

x(t) = e* x(0) + [} e*“ ¥ Bu(t)dt
_ [1 til{xl(O):| .

0 1| x,(0

. F
[xl(0)+txz(0>] r“"r)(ﬂ
= + ‘[
x,(0) 0 [E]
m

)
tt—— || —
=[x1(0)+tx2(0):|+ [ 2]m

x,(0)

1 t-n 0
ik 1}[5] 0 &
m

dt



Chapter 6  State Space: Frequency Response, Time Domain 153

(-5)
_ |:x1(0)+tx2(0)] . 2 lm

x,(0) [F]
t JR—
m

(5]
_ [x1(0)+tx2(0)j| L (L2 Am

x,(0)

(6.31)

This result is the same as the familiar equations for the position and velocity
of a mass undergoing a constant acceleration:

. .. . . . acceleration) x (time®
I:XI(t)} _ 1n1t1a1pos1t10n+t1me><(1n1t1alve1001ty)+( )X( )

= 2
t C . . .
Xa(1) initial velocity + (acceleration) X (time)

(6.32)

6.10 MATLAB Code tdof_ss_time_ode45_slnk.m — Time Domain
Response of tdof Model

6.10.1 Equations of Motion Review

There are several ways to numerically solve for transient responses using
MATLAB. One method uses numerical integration, calling the integration
routine from a command line and defining the state equation in a separate
MATLAB function. Another method uses Simulink, a linear/nonlinear
graphical block diagram model building tool linked to MATLAB.

We will solve for the transient response of our tdof model using both methods
and compare the results with the closed form solution calculated using the
modal transient response method in Chapter 9.



154  Vibration Simulation Using MATLAB and ANSYS

I I N I
k, K,
1

= :

L o & O

Figure 6.3: tdof model with damping for use in MATLAB/Simulink models.

z(0)=x(0)=0 z,(0)=x,(0)=-1  2z,(0)=x,(0)=1
2, (0)=x,(0)=-1 2,(0)=x,(0)=2 2,(0) = x,(0) =2

Table 6.1: Initial conditions for tdof meodel in Figure 6.3.
Step function forces of amplitudes indicated in Figure 6.3 are applied to
masses 1 and 3; mass 2 has no force applied. Initial conditions of position and

velocity for each mass are shown in Table 6.1.

The equations of motion in state space are then:

[0 1 0 0 0 0 0
x| ok . 0 o |x] |-
“ m,m, m, m, m,
X
2 0 0 0 1 0 0 ? 0
o] x k +k k 14l 0 |a
T2 S —(k, +k,) (¢, +¢,) X, 6 X v )
X4 m2 mZ m2 m2 m2 m2 X4 m2
> J 0 0 0 0 0 1 5 0
X X
T le 0k T e N S
L m, m, m; m, | RUN
(6.33)

The initial condition vector, x(0) is:



Chapter 6  State Space: Frequency Response, Time Domain 155

[x,@] [z0] [0
x,(0) z,(0) -1
RESOIRENOY RS
x(0) = 0|07 2 (6.34)
x5(0) 2,(0)
[ %:,(0) | [2,(0)] |-2

The output equation for the displacement outputs (no velocities included) with
no feedthrough term is:

Y
+ (0)(D) (6.35)

=

I
o o -
o o o
o -~ o
© o o
- o
o o o

Y3

These are the system matrices that are used in the MATLAB code below.
6.10.2 Code Description

Two methods will be used to solve for the time domain response. The
MATLAB code tdof ss time_oded45_slnk.m is used for both methods,
prompting the user to define which solution technique is desired.

The first method uses the MATLAB Runge Kutta method ODE45 and calls
the function file tdofssfun.m, which contains the state equations. The results
are then plotted. To use the ODE45 solver, type “tdof ss time ode45_slnk”
from the MATLAB prompt and use the default selection.

The second solution uses the Simulink model tdof _ss_simulink.mdl and the
plotting file tdof_ss_time_slnk plot.m.

To use the Simulink solver:

1) Type “tdof ss time ode45 slnk” and choose the Simulink
solver.

2) The program will prompt the reader to type
“tdof ss simulink” at the MATLAB command prompt.
This will bring up the Simulink model on the screen.



156 Vibration Simulation Using MATLAB and ANSYS

3) Click on the “simulation” choice in the model screen and
then choose “start.” The Simulink model will then run.

4) To see the plotted results, type “tdof ss_time slnk plot.”

6.10.3 Code Results — Time Domain Responses

State-Space Displacements of dof 1, 2 and 3

Vibration Displacements

Figure 6.4: ODE45 simulation motion of tdof model.

- State Space Simulink Calculation of Displacements of dof 1, 2 and 3
T T T T T T T

! ! "'l —— dof 1
. ! || = dof2
— dof 3

Vibration Displacements
S

Time, sec

Figure 6.5: Simulink simulation motion of tdof model.



Chapter 6  State Space: Frequency Response, Time Domain 157

Displacements of dof 1, 2 and 3 from Simulink (sInk) and Closed Form {cf)
T T . T ,

! — cfdof1

| — cfdof2

L _|— cfdof3

I —— sink dof 1

|

t

I

|

|

|

i —e— slnk dof 2
-+ sink dof 3

Vibration Displacements
S

Time, sec

Figure 6.6: Overlay of closed form solution from Chapter 9, Figure 9.4, with Simulink

solution.

6.10.4 Code Listing

%
%
%

%

tdof_ss_time_ode45_slnk.m state-space solution of tdof model with
initial conditions, step function forcing function and displacement outputs
using the ode45 solver or Simulink, user is prompted for damping values
clear all;

globalabu % this is required to have the parameters available
% for the function

which_run = input(enter "1" for Simulink or "enter” for ode45 run ... ');
if isempty(which_run)
which run=0

end

define the values of masses, springs, dampers and Forces

ml=1;
m2=1;
m3=1;

¢l = input(‘input value for cl, default 0.0, ... );

if (isempty(cl))

cl =0.0;
else
end

c2 = input('input value for ¢2, defauit 0.0, ... ");




158  Vibration Simulation Using MATLAB and ANSYS
if (isempty(c2))
c2=0.0;
else
end
kl=1;
k2=1,
+
Fl=1;
F2=0;
F3=-2,
% define the system matrix, a
a=[0 1 0 0 0 0
-k1/ml -cl/ml k1/ml cl/ml 0 0
0 0 0 1 0 0
KU/m2  elm2  kl+k2)ym2 -(cl+e2ym2 K2/m2  ¢2/m2
0 0 0 0 0 1
0 0 k2/m3 c2/m3 -k2/m3 -c2/m3];
% define the input matrix, b
b=[ 0
Fl/ml
0
F2/m2
0
F3/m3];
1% define the output matrix for transient response, ¢, displacements only
¢=[100000
001000
000010];
% define the direct transmission matrix for transient response, d, the same number of

rows as ¢ and the same number of columns as b
d = zeros(3,1);

if which run=0 % transient response using the ode45 command

u=1;

ttotal = input("Input total time for Simulation, default = 10 sec, ... ");

if (isempty(ttotal))
ttotal = 10;

else

end

tspan = [0 ttotal];

x0=[0-1-121-2]} % initial condition vector, note transpose



Administrator
Line


Chapter 6  State Space: Frequency Response, Time Domain 159

%

%

options =[]; % no options specified for ode45 command
[tx] = ode45("tdofssfun' ,tspan,x0,options);
y=c*x; % note transpose, X is calculated as a column vector in time

plot(t,y(1,),k+-"4,y(2,),kx-",,(3,:),’k-")
title('State-Space Displacements of dof 1, 2 and 3")
xlabel('Time, sec')

ylabel('Vibration Displacements')

legend('dof 1','dof 2','dof 3")

grid

else % setup Simulink run

define the direct transmission matrix for transient response, d, the same number of
rows as ¢ and the same number of columns as b

define time for simulink model
ttotal = input('Input total time for Simulation, default = 10 sec, ... ');

if (isempty(ttotal))
ttotal = 10;

else

end

disp(' );

disp( ")

disp(' );

disp(' );

disp(" ");

disp(' );

disp('Run the Simulink model "tdof ss_simulink.mdl" and then');
disp('run the plotting file "tdof_ss_time slnk plot.m");

end

6.10.5 MATLAB Function tdofssfun.m —

Called by tdof ss_time ode45_slnk.m

%

function xprime = tdofssfun(t,x)
function for calculating the transient response of tdof ss_time ode45.m
global abu

xprime = a*x + b*u;




160  Vibration Simulation Using MATLAB and ANSYS

6.10.6 Simulink Model tdofss_simulink.mdl

tout

Clock time for - dof1
simulink run
* dof1 disp
X' = Ax+Bu -
| TP y = Cx+Du —p»Demux »| dof2
Step State-Space Demux dof2 disp
k| dof3
dof3 disp
Ly 1]
dof3 scope

Figure 6.7: Block diagram of Simulink model tdofss_simulink.mdl.

The block diagram was constructed by dragging and dropping blocks from the
appropriate Simulink block library and connecting the blocks. The input is
the step block. The clock block is used to output time to the tout block for
plotting in MATLAB. The model is defined in the state space block, reading
in values for the a, b, ¢ and d matrices from the MATLAB workspace, created
during execution of tdof ss_time_ode45 slnk.m. The demux block
separates the vector output of the state space block and sends the
displacements of the three masses to three blocks for storing for plotting in
MATLAB. The scope block brings up a scope screen and shows the position
of dof3 versus time as the program executes. This example is so small that
the screen displays instantly for the default 10 sec time period, but for a longer
time period the scope traces the progress of the simulation.



Chapter 6  State Space: Frequency Response, Time Domain 161

Problems

Note: All the problems refer to the two dof system shown in Figure P2.2.

P6.1 Set m; =m,=m=1, k =k, =k=1, ¢, =c, =0 and define the state

space matrices for a step force applied to mass 1 and for output of position of
mass 2. Write out by hand the equation for the transfer functions matrix as
shown in (6.11). Extra credit: use a symbolic algebra program to take the
inverse of the (sI—A) term and then multiply out the equations to see that

they match the results of P2.2.

P6.2 (MATLAB) Modify the code tdefss.m for the two dof system and plot
the distinct frequency responses.

P6.3 (MATLAB) Modify the code tdof ss time ode45 sink.m for the two
dof system with m, =m, =m=1, k, =k, =k=1 and ¢, =c, =0 for the
following step forces and initial conditions:

a) F=0,F,=-3
b) z,=0,2=-2,2,=—1,2,=2

Plot the time domain responses using both MATLAB and Simulink.



CHAPTER 7

MODAL ANALYSIS

7.1 Introduction

In Chapter 2 we systematically defined the equations of motion for a multi dof
(mdof) system and transformed to the “s” domain using the Laplace transform.
Chapter 3 discussed frequency responses and undamped mode shapes.

Chapter 5 discussed the state space form of equations of motion with arbitrary
damping. It also covered the subject of complex modes. Heavily damped
structures or structures with explicit damping elements, such as dashpots,
result in complex modes and require state space solution techniques using the
original coupled equations of motion.

Lightly damped structures are typically analyzed with the “normal mode”
method, which is the subject of this chapter. The ability to think about
vibrating systems in terms of modal properties is a very powerful technique
that serves one well in both performing analysis and in understanding test data.
The key to normal mode analysis is to develop tools which allow one to
reconstruct the overall response of the system as a superposition of the
responses of the different modes of the system. In analysis, the modal method
allows one to replace the n-coupled differential equations with n-uncoupled
equations, where each uncoupled equation represents the motion of the system
for that mode of vibration. If natural frequencies and mode shapes are
available for the system, then it is easy to visualize the motion of the system in
each mode, which is the first step in being able to understand how to modify
the system to change its characteristics.

Summarizing the modal analysis method of analyzing linear mechanical
systems and the benefits derived:

1) Solve the undamped eigenvalue problem, which identifies the
resonant frequencies and mode shapes (eigenvalues and
eigenvectors), useful in themselves for understanding basic
motions of the system.

2) Use the eigenvectors to uncouple or diagonalize the original
set of coupled equations, allowing the solution of n-uncoupled
sdof problems instead of solving a set of n-coupled equations.



164  Vibration Simulation Using MATLAB and ANSYS

3) Calculate the contribution of each mode to the overall
response. This also allows one to reduce the size of the
problem by eliminating modes that cannot be excited and/or
modes that have no outputs at the desired dof’s. Also, high
frequency modes that have little contribution to the system at
lower frequencies can be eliminated or approximately
accounted for, further reducing the size of the system to be
analyzed.

4) Write the system matrix, A, by inspection. Assemble the input
and output matrices, B and C, using appropriate eigenvector
terms. Frequency domain and forced transient response
problems can be solved at this point. If complete eigenvectors
are available, initial condition transient problems can also be
solved. For lightly damped systems, proportional damping can
be added, while still allowing the equations to be uncoupled.

7.2 Eigenvalue Problem
7.2.1 Equations of Motion
We will start by writing the undamped homogeneous (unforced) equations of

motion for the model in Figure 7.1. Then we will define and solve the
eigenvalue problem.

Figure 7.1: Undamped tdof model.
mi+kz=0 (7.1

From (2.5) with k, =k, =k andcl=¢c2=0: .



Chapter 7 Modal Analysis 165

0 o[z] [k -k o]z [0
m 0% |+|-k 2k -k|/z, [=|0 (7.2)
0 m|[Z| |0 -k k| z

o o B
o

7.2.2 Principal (Normal) Meode Definition

Since the system is conservative (it has no damping), normal modes of
vibration will exist. Having normal modes means that at certain frequencies
all points in the system will vibrate at the same frequency and in phase, i.e., all
points in the system will reach their minimum and maximum
displacements at the same point in time. Having normal modes can be
expressed as (Weaver 1990):

z, =z sin(@t+9,) =z, Im(e"™"*) (7.3)

Where:

z, = vector of displacements for all dof’s at the i™ frequency

z,, = the i" eigenvector, the mode shape for the i resonant

mi

frequency

, = the i" eigenvalue, i resonant frequency
¢, = an arbitrary initial phase angle

For our tdof system, for the i® freqhency, the equation would appear as:

Zl Zmli
zZ, |=| zp, [sin(@t+¢,), (7.4
z z :

3 m3i

where the indices in the z_,, term represent the k™ dof and the i mode of the

modal matrix z_ .

7.2.3 Eigenvalues / Characteristic Equation
Since the equation of motion

mi+kz =0 (7.5)



166  Vibration Simulation Using MATLAB and ANSYS

and the form of the motion
z, =z, sin (0t+¢,) (7.6)

i mi

are known, z, can be differentiated twice and substituted into the equation of

motion: .
#, =—w'z_, sin (a)if+¢i) 7.7
m[—cofzmi sin (@t+0, )] +k[z,; sin (ot+0,)]=0 (7.8)
Canceling the sine terms:
-w’'mz_ +kz_ =0 L (7.9
kz_, =o'mz,; (7.10)

Equation (7.10) is the eigenvalue problem in nonstandard form, where the
standard form is (Strang 1998):

Az=)\z (7.11)

The solution of the simultaneous equations which make up the standard form
eigenvalue problem is a vector z such that when z is multiplied by A, the
product is a scalar multiple of z itself.

The nonstandard problem is “nonstandard” because the mass matrix m falls
on the right-hand side. The form of the matrix presents no problem for hand
calculations, but for computer calculations it is best transformed to standard
form.

Rewriting the nonstandard form eigenvalue problem as a homogeneous
equation:

(k~w/m)z, =0 (7.12)

A trivial solution, z_; =0, exists but is of no consequence. The only

possibility for a nontrivial solution is if the determinant of the coefficient
matrix is zero (Strang 1998). Expanding the matrix entries:



Chapter 7 Modal Analysis 167

k -k 0 m 0 0
-k 2k —k|{-&'|0 m 0|z =0 (7.13)
0 -k k 0 0 m
Performing the matrix subtraction:
k—-o'm -k 0
-k 2k-om -k |z,=0 (7.14)
0 -k k—-&’m

Setting the determinant of the coefficient matrix equal to zero:

k—o’m -k 0
& 2k-ofm -k |=0 (7.15)
0 -k k—@®'m

The determinant results in a polynomial in , the characteristic equation,

where the roots of the polynomial are the eigenvalues, poles, or resonant
frequencies of the system.

—-m*@°® + 4km’e* - 3k*mw’ =0
(7.16a,b)

@ (-m*e’ +4km’@’ —3k’m) =0
Two of the roots are at the origin:
w =0 (7.17)
Solving for * as a quadratic in (7.16b) above:

1

, —4km’ % (16k’m* —12k’m* )2

o 3

—2m

_ —4km’ £ 2km’

—-2m’



168  Vibration Simulation Using MATLAB and ANSYS

_ -6k -2k
-2m’ -2m
LS X (7.18)
m m .
m (7.19)
o =t
m

For each of the three eigenvalue pairs, there exists an eigenvector z,, which
gives the mode shape of the vibration at that frequency.

7.2.4 Eigenvectors
To obtain the eigenvectors of the system, any one of the degrees of freedom,

say zi, is selected as a reference. Then, all but one of the equations of motion
is written with that value on the right-hand side:

(k-om)z,; =0 o (7.20)

(k-@’m) -k 0 -
-k (2%k-e'm) -k Z, |=0 (7.21)

0 -k (k—o'm) L%

Expanding the first and second equations, dropping the subscripts “1” and

G 93,

m

(k-w!m)z, —kz, =0

(7.22a,b)
—kz, +(2k—@m)z, —kz, =0

Rewriting with the z, term on the right-hand side and solving for the (z,/z,)
ratio from (7.22a):

-kz, =—(k-o/m)z, - (7.23)



Chapter 7 Modal Analysis 169

z, k-o'm

7.24
P (7.24)

Solving for the (z,/z,) ratio from (7.22b):
. (2k-o!m)z, —kz, =kz, (7.25)
(2k—o)i2m)[—zl}—& =k (7.26)

Z Z
P .
(2k -mfm)[w] L (1.27)
k z,
2k-o'm)(k-o'm

ﬁ=( )2( ‘ )—1 (7.28)

z, k

2.4 2 2

z; _ m oy -3kmoy +k (7.29)

z, 'S

We now have the general equations for the eigenvector values. If a value is
chosen for z , say 1.0, then the two ratios above can be solved for

corresponding values of z, and z, for each of the three eigenvalues.

Since at each eigenvalue there are (n+1) unknowns (w;, z,,; ) for a system with

n equations of motion, the eigenvectors are only known as ratios of
displacements, not as absolute magnitudes. For the first mode of our tdof
system the unknowns are ®, Z,, Z,, and z_;, and we have only three

i? “mll?

equations of motion.

Substituting values for the three eigenvalues into the general eigenvector ratio
equations above, assuming m, =m, =m=1, k, =k, =k =1:

For mode 1, @’ =0

2" (7.30)



170  Vibration Simulation Using MATLAB and ANSYS

zZ, =z, (7.31)
2k)(k
z _(29(k) )2( )—1=2—1=1 (7.32)
z, k
. Z, = Z, (7.33)
Arbitrarily assigning z;=1:
1
z, =|1 (7.34)
1
1 1 1
R N e
| R v - A—

o0, OO0 00

Rigid-Body Mode, 0 rad/sec

Figure 7.2: Mode shape plot for rigid body mode, where all masses move together with no
stress in the connecting springs.

For mode 2, ] = k

=

o (7.35)
2,=0 | (7.36)
k k
e (2
Z_3=[ m m/ /_ =(2k_k)(0)—1=—1 (7.37)



Chapter 7

Modal Analysis

171

(7.38)

(7.39)

- 'k

-

W
~

h—

-
-

S

onoonuo O RN e N

Second Mode, Middle Mass Stationary, 1 rad/sec

Figure 7.3: Mode shape plot for second mode, middle mass stationary and the two end
masses move out of phase with each other with equal amplitude.

z

For node 3, 0);:&
e
% m —__21(__2
zZ, k k
z, = -2z,
3k 3k
2k—| — [m || k-] — |m
s 60 S I T
K Kk Kk
Z, =2,
1
zZ,=(—2

(7.40)

(7.41)

(7.42)

(7.43)

(7.44)



172 Vibration Simulation Using MATLAB and ANSYS

1 -2 1
nin A
o AN
O O ___ Q0O
Third Mode, 1.732 rad/sec

]

Figure 7.4: Mode shape plot for third mode, with two end masses moving in phase with
each other and out of phase with the middle mass, which is moving with twice the
amplitude of the end masses.

7.2.5 Interpreting Eigenvectors

For the first mode, if all the masses start with either zero or the same initial
velocity and with initial displacements of some scalar multiple of [1 1 'I.]T,

where “T” is the transpose, the system will either remain at rest or will
continue moving at that velocity with no relative motion between the masses.

For the second and third modes, if the system is released with zero initial
velocities but with initial displacements of some scalar multiple of that
eigenvector, then the system will vibrate in only that mode with all the masses
reaching their minimum and maximum points at the same point in time.

Any other combination of initial displacements will result in a motion which is
a combination of the three eigenvectors.

7.2.6 Modal Matrix

Now that the three eigenvectors have been defined, the modal matrix will be
introduced. The modal matrix is an (nxn) matrix with columns corresponding
to the n system eigenvectors, starting with the first mode in the first column
and so on:



Chapter 7 Modal Analysis ‘ 173

mode: 1 2 3

mil Zm  Zm |~ DOF1
Z,= | Zoyt Zmoy  Zmas | DOF2 (7.45)
Zost Zmyy  Zgy < DOF3

T 7

Z, 7, 14

For our tdof problem:

11 1
z,=(1 0 =2 (7.46)
1 -1 1

7.3 Uncoupling the Equations of Motion

At this point the system is well defined in terms of natural frequencies and
modes of vibration. If any further information such as transient or frequency
response is desired, solving for it would be laborious because the system
equations are still coupled. For transient response, the equations would have to
be solved simultaneously using a numerical integration scheme unless the
problem were simple enough to allow a closed form solution. To calculate the
damped frequency response, a complex equation solving routine would have
to be used to invert the complex coefficient matrix at each frequency.

In order to facilitate solving for the transient or frequency responses, it is
useful to transform the n-coupled second order differential equations to n-
uncoupled second order differential equations by transforming from the
physical coordinate system to a principal coordinate system. In linear algebra
terms, the transformation from physical to principal coordinates is known as a
change of basis. There are many options for change of basis, but we will show
that when eigenvectors are used for the transformation the principal coordinate
system has a physical meaning; each of the uncoupled sdof systems represents
the motion of a specific mode of vibration. The n-uncoupled equations in the
principal coordinate system can then be solved for the responses in the
principal coordinate system using weli-known solutions for single degree of
freedom systems. The n-responses in the principal coordinate system can then
be transformed back to the physical coordinate system to provide the actual



174  Vibration Simulation Using MATLAB and ANSYS

response in physical coordinates. This procedure is shown schematically in
Figure 7.5.

PHYSICAL COORDINATES

Coupled Equations of Motion
Initial Conditions
Forcing Functions

l Transform

PRINCIPAL COORDINATES
Uncoupled Equations of Motion
Initial Conditions

Forcing Functions

Solution

l Back-Transform

PHYSICAL COORDINATES

Solution

Figure 7.5: Roadmap for Modal Solution

The procedure above is analogous to using Laplace transforms for solving
differential equations, where the differential equation is transformed to an
algebraic equation, solved algebraically, and back transformed to get the
solution of the original problem.

We now need a means of diagonalizing the mass and stiffness matrices, which
will yield a set of uncoupled equations.

The condition to guarantee diagonalization is the existence of n-linearly
independent eigenvectors, which is always the case if the mass and stiffness
matrices are both symmetric or if there are n-different (nonrepeated)
eigenvalues (Strang 1998).

Going back to the original homogeneous equation of motion:

mz+kz =0 (7.47)



Chapter 7 Modal Analysis 175

“ 2,

Having normal modes means that at frequency “i
z, =12 sin(wt+9,) . , (7.48)
Differentiating twice to get acceleration:
* i, =-0'z_ sin (0t+0,) (7.49)
Substituting back into the equation of motion:
m{—oofzmi sin(o,t + ¢, )} +k{z,; sin(et+6¢,)} =0 (7.50)
Canceling sine terms:

~@'mz, +kz_ =0 (7.51)

Rearranging and writing the above equation for both the “i™ and j i™ modes:

kz_ =o’mz, (7.52)
kz,, =w'mz,, | (7.53)
m and z are the “i i™ and “§™ eigenvectors, the “i™ and “j™ columns of
the modal matrlx.
Premultiplying (7.52) by the transpose of z, z:,j :
z,kz =z mz (7.54)

Taking the transpose of '(7.53), where the transpose of a product is the product

of the individual transposes taken in reverse order, i.c, [AB]' =BTA™:
z, k" =0lz;m", (7.55)
since m and k are symmetrical, m" =m, and k" =k:

zh k= (DJ zmjm (7.56)



176  Vibration Simulation Using MATLAB and ANSYS

Postmultiplying (7.56) by z_,
z ke =o'z mz,, (7.57)

Now, subtracting (7.57) from (7.54):
z ke = col zmjmz

—(z kz =’z mz_
m i = O oy (7.58)
- (('Oi _(‘Oj )ijmzmi

When i# j, the term ((of —oaf) cannot be equal to zero, meaning that the

T
term z,mz ; must be equal to zero.
z.mz_ =0 (7.59)

Looking at the sizes of the matrices multiplied:

z,, =Ixn
m=nxn . (7.60)
z, =nxl
(1xn) x (nxn) x (nx1) = (1x1) = scalar (7.61)
Equation (7.59) can be rewritten:
z,mz  =m; =0, (7.62)

where m; is an off-diagonal term in the mass matrix of the principal coordinate
system.

The two eigenvectors z,;and z,, are said to be orthogonal with respect to m,

where orthogonality is defined as the property that causes all the off-diagonal
terms in the principal mass matrix to be zero.

Returning to (7.62), for i=j, (m.z —m?)= 0. Thus the product z_ mz_; can

be set equal to any arbitrary constantm, a diagonal term in the principal

ii 2,

mass matrix.



Chapter 7 Modal Analysis 177

zl mz_ =m, (7.63)

This is where various normalization techniques for eigenvectors come into
play, discussed in the next section.

The stiffness matrix, k, is normalized in the same manner.

In practice, instead of diagonalizing the mass and stiffness matrices term by
term by pre- and postmultiplying by individual eigenvectors, the entire modal
matrix is used to diagonalize in one operation using two matrix
multiplications:

m, =z mz_ : (7.64)
k, =zl kz_ (7.65)

7.4 Normalizing Eigenvectors

Because eigenvectors are only known as ratios of displacements, not as
absolute magnitudes, we can choose how to normalize them. Up to now, when
calculating eigenvectors we have arbitrarily set the amplitude of the first dof to
1. . We will now discuss two of the most commonly used eigenvector
normalization techniques. Different normalizing techniques result in different
forms of the resulting uncoupled differential equations.

7.4.1 Normalizing with Respect to Unity

One method is to normalize with respect to unity, making the largest element
in each eigenvector equal to unity by dividing each column by its largest
value. We now add the notation z_, where the “n” refers to a “normalized”

modal matrix.

1 1 1 ‘ 1 1 -05
z,=[1 0 2| = =z =[1 0 1 (7.66)
1 -1 1 1 -1 =05

Using the unity normalized modal matrix to transform the mass matrix in two
matrix multiplications:



178  Vibration Simulation Using MATLAB and ANSYS

1 1 1m0 0
zm= 1 0 -1|{0 m O|=| m 0 -m | (7.67)
-0.5 1 05| 0 m

[«

-5m m -.5m
m m m |1 1 -5 3m O 0
m=zmz={m 0 -mi|l 0 1|=[0 2m 0 (7.68)
-5m m -5mli[l -1 -5 0 0 15m

Similarly transforming the stiffness matrix:

1 1 1k -k O 0 0 0
zk=[1 0 -1||-k 2k —k|=| kK 0 -k | (7.69
-5 1 -5/|0 -k k -1.5k 3k -1.5k

0 o o 11 -5]7fo 0o o
k,=z'kz,=| .k 0 —k |[1 0 1|=[0 2k 0 (7.70)
~1.5k 3k -1.5k||1 -1 -5| [0 0 45k

Note that the original filled stiffness matrix is now diagonal. Also note that if
the diagonal clements of the stiffness matrix (7.70) are divided by the
corresponding diagonal elements of the mass matrix (7.69), the three terms are
the squares of the respective eigenvalues.

7.4.2 Normalizing with Respect to Mass

Another method is to normalize with respect to mass using the equation:

zimz =10, (7.71)

nt ni

making each diagonal mass term equal 1.0. This is the method used by
default in ANSYS.

Once again, note that modal matrix subscript “ni” in z_, signifies the

normalized i® eigenvector. Each normalized eigenvector is defined as follows:
z . z .

2, =—"—=-"" (7.72)
I:z:ﬁmzmi :IE qi



Chapter 7 Modal Analysis 179

Where q; is defined as:

q;

[Zn: Z [i mjkzmkiﬂ2 (7.73)

For a diagonal mass matrix, q can be simplified since all the m; terms are

Z€T0!

1

|:zn: m, 72, i|5 (7.74)

q;

Thus, by operating on m by z_,the mass matrix should be transformed into
the identity matrix. Starting with z_, and the “q” values from above:

11 1 ,
z.=[1 0 =2 (1.75)
1 -1 1

q, = [m(l)2 +m(1)* +m(1)2:|% =3m -
g, =| m(1)’ +m (0 +m(—1)2]% =v2m (7.76a,b,¢)
9 =[m(1)2 +m(-2)* +m(1)2]% =J6m

The modal matrix normalized with respect to mass becomes:

[ 1 1 1 ] 1 1 1]
HBm 2m Jem NG
|t 2|1 2
“m " Tml wmB " T .77
1 -1 1 1 -1 1
| 3m 2m Jom | V3 V2 V6|

Using z, to transform the mass matrix: e e



180  Vibration Simulation Using MATLAB and ANSYS

1 1 1 m 0 0] m m m
Bm  Bm Bm 3m 3m 3m
1 -1 m —-m
zm=z 0 ﬂ 00 m 0 =E 0 E (7.78)
1 -2 1 m —2m m
[Vom Wom Vom0 O ™ [ Jom Vom Vom|
[ m m m |[ 1 1 1 ]
3m  B3m  \B3m |[V3m V2m  Jém
1 | m —m 1 -2
m, =z mz = —\/_2? 0 om E 0 ﬁ (7.79)
m —2m m 1 -1 1
Vom Vém Vém | V3m 2m em |
[£+£+£] [ m +0- m J
3m 3m 3m m3v2 m/3v2
m m m m
™" (mﬁﬁ”‘mﬁﬁ] o)
m 2m m m 0 m
_[mﬁﬁ_mﬁJEerﬁﬁJ [mﬁ£+ ‘mﬁﬁ]
[ m 2m + m ]_
m3V6 my3v6 my3/e
(whFwhE)
mV2v6  mv2Ve
m 4m m
(a a*a] ]
1 00
=0 1 0
0 01
(7.80)

The original mass matrix has been transformed to the identity matrix.

Similarly transforming the stiffness matrix:



Chapter 7 Modal Analysis

181

;

3

(#5-77)

3 6 3

B |=

—+O+—J
2

(7.81)

(7.82)

1

3

( I

J3v6 V36 - V36

. 0
1

NN

1

[

3 12 3
6 6 6

(

e e

).

)

(7.83)




182  Vibration Simulation Using MATLAB and ANSYS

000

k,=[0 1 L3 ‘ (7.84)
0 0 3

<

m

Note that the normalized stiffness matrix is now diagonal and that the diagonal
terms are the squares of the corresponding three eigenvalues. The normalized
stiffness matrix is also known as the spectral matrix (Weaver 1990).

Because normalizing with respect to mass results in an identity principal mass
matrix and squares of the eigenvalues on the diagonal in the principal stiffness
matrix, we will use only this normalization in the future. Since we know the
form of the principal matrices when normalizing with respect to mass, no
multiplying of modal matrices is actually required: the homogeneous
principal equations of motion can be written by inspection knowing only
the eigenvalues.

7.5 Reviewing Equations of Motion in Principal Coordinates —
Mass Normalization

7.5.1 Equations of Motion in Physical Coordinate System

0 0]|% k -k 0|z
m 0[|Z +|-k 2k -k||z, [=][0] (7.85)
0 m||Z 0 k k ||z

o o 8

Eigenvalues:

@ =0 a (7.86)
(7.87a,b)

Eigenvectors, normalized with respect to mass:



Chapter 7  Modal Analysis

183

10 0][z,
01 0||z,
00 1|z

p3

7.5.3 Expanding Matrix Equations

Systems

- 8-
5= 5l -

7.5.2 Equations of Motion in Principal Coordinate System

(7.88)
-1
V3 V2 Vel
00 0
Z]
k P
0 — 0z, =[0] (7.89)
2,3
0 o X7
L m |

of Motion in Both Coordinate

Physical Coordinates

m#, +kz, —kz, =0
m3, —kz, +2kz, —kz, =0
mz, —kz, +kz, =0

Principal Coordinates

z,=0

. Lk
z,+—z,=0
p2 m p2

. 3k
Z,+—z,=0
p3 m p3
L —

These equations are coupled and
have to be solved
simultaneously.

These homogeneous equations
are uncoupled and can be solved
independently.

Table 7.1: Summary of equations of motion in physical and principal coordinates.



184  Vibration Simulation Using MATLAB and ANSYS

7.6 Transforming Initial Conditions and Forces

Now that we know how to construct the homogeneous uncoupled equations of
motion for the system, we need to know how to transform initial conditions
and forces to the principal coordinate system. We can then solve for transient
and forced responses in the principal coordinate system using the uncoupled

equations.

Starting with the original non-homogeneous equations of motion in physical

coordinates:
mz+kz=F

Premultiplying by z! , the transpose of the modal matrix:
zZmi+z'kz=2'F

Inserting the identify matrix, =z z_':

T —1 . T -1 T
zmzz Z+z Kz z z=2F
— ——
I I

Rewriting and regrouping terms:

T “1:s T -1, _ T
zmz z i+z kz 2 2=z F,
NI . e o

m, Z kp z, Fp

(7.90)

(7.91)

(7.92)

(7.93)

where z'mz, and z_kz, were shown to diagonalize the mass and stiffness

matrices in the previous section.
Defining terms:

m, = (nxn) diagonal principal mass matrix

k, = (nxn) diagonal principal stiffness matrix

. - . . . . .
z,Z=1, = acceleration vector in principal coordinates

7,'z= z, = displacement vector in principal coordinates



Chapter 7  Modal Analysis 185

z F = F, = force vector in principal coordinates

In the previous section, the definitions for accelerations and displacements in
physical and principal coordinates were shown to be:

' P (7.94)

The same relationships hold for initial conditions of displacement and
velocity:

e (7.95)

In (7.95), z,, and z, are vectors of initial displacements and velocities,

respectively, in the principal coordinate system, and z_ and z_ are vectors of

initial displacements and velocities, respectively, in the physical coordinate
system.

Taking the inverse of the modal matrix to convert initial conditions requires
that the modal matrix be square, with as many eigenvectors as number of
degrees of freedom. We will see in future chapters that there are instances
where not all eigenvectors are available. In one case, we may choose to only
calculate eigenvalues and eigenvectors up to a certain frequency in order to
save calculation time or because the problem only requires knowledge of
response in a certain frequency range. In another case, we may build a
“reduced” model where only the most significant modes are retained.
Fortunately, a large majority of real life problems involve zero initial
conditions.

7.7 Summarizing Equations of Motion in Both Coordinate Systems

The two sets of equations, in physical and principal coordinates, are shown in
Table 7.2:



186  Vibration Simulation Using MATLAB and ANSYS

Physical Coordinates Principal Coordinates
z,=F,
, ) N <
mZ, +kz, -kz, =F ZP2+;ZP2=FP2
mz, —kz, +2kz, —kz, =F, ) 3k
mz, —kz, +kz, = F, Zp +EZP3 =E,;
IC's: z,2,,2,,2,,2,,7, IC's: z,,2,,,2,,2,,2,,, 2

Table 7.2: Summary of equations of motion in physical and principal coordinates.

The variables in physical coordinates are the positions and velocities of
the masses. The variables in principal coordinates are the displacements
and velocities of each mode of vibration.

The equations in principal coordinates can be easily solved, since the
equations are uncoupled, yielding the displacements. We now need to back
transform the results in the principal coordinate system to the physical
coordinate system to get the final answer.

7.8 Back-Transforming from Principal to Physical Coordinates

We showed previously that the relationship between physical and principal
coordinates is:

z'z=1, (7.96)
Premultiplying by z,:
z,(z,'7) =122, (7.97)
I
z2=1212, ‘ (7.98)

Thus, the displacement vector in physical coordinates is obtained by
premultiplying the vector of displacements in principal coordinates by the
normalized modal matrix z .



Chapter 7 Modal Analysis . 187

Similarly for velocity:

i=21 (7.99)

7.9 Reducing the Model Size When Only Selected Degrees of Freedom
are Required :

So far we have hinted at the fact that only portions of the eigenvector matrix
are needed if selected dof’s have forces applied and other (or the same) dof’s
are needed for output. This section will show how the reduction in dof’s
occurs. This reduction is one of the key steps to be used later in the book
when we cover how to reduce the size of models derived from large finite
element simulations.

Reviewing the steps in the modal solution, starting with the equations of
motion and initial conditions in physical coordinates:

mZ, +kz, —kz, =F,
mz, -kz, +2kz, —kz, =F,
mz, —kz, +kz, = F (7.100)

Initial Conditions : z,,z,,2,,2,,Z,,Z, =0
Solve for eigenvalues: ®,,®,,,

Solve for eigenvectors, normalize with respect to mass and form the modal
matrix from columns of eigenvectors:

Zai Zaz Zas
2,512, Zpynp Zyy (7.101)

n

Zyyy Zpn Zyy

Transform forces from physical to principal coordinates:

p

F, =z'F O (1.102)

Write the equations of motion in principal coordinates:



188  Vibration Simulation Using MATLAB and ANSYS

=F

Zpl —4pl

. 2
zZ,+w;z,=F

A (7.103a,b,c,d)
Z,+wz,; = Fp3

IC's: 2,,2,,2,3,2,,2,3,2p, = 0
A ]

Solve the equations in principal coordinates in either time or frequency
domain and then back transform to physical coordinates:

(7.104)

Note that the two critical transformations (assuming zero initial conditions)
involve premultiplying by the transpose of the modal matrix ( F —F, ) in

(7.102) or the modal matrix ( z, — z ) in (7.104).

Let us first examine the force transformation by expanding the equations:

T
Fp =z F (7.105)
[z z z. ' [E] [z, z z F
nll nl2 nl3 1 nll n2l n3l 1
Ty — —
z,F=\z, 2z, 2z E =2 2z Zw || B
LZn3t Zazz Znm El 2w Zus Zan || B

(7.106)
z, K +z,,F +z,,F
=|z,,F +z,,,F, +2.,,F
_an3Fl +z,»5 +Zn33F3_

Note that the multipliers of F, in the first column are the elements of the first
row of the modal matrix, the multipliers of F, in the second column are the
elements of the second row of the modal matrix and the multipliers of F, in
the third column are the elements of the third row of the modal matrix.

Suppose that force is to be applied at only mass 1, F, then only the first row

of the modal matrix is required to transform the force in physical coordinates
_to the force in principal coordinates.



Chapter 7 Modal Analysis 189

Now let us examine the displacement transformation by expanding the
equations:

=272, (7.107)
Z . Zon Zaa Zana || Zm ZyZy t 2,52, 12,32,
Z=\2, |=2,Z,=|Zyy Zyp Zy||Zp |T| ZoniZp T ZonZyy T2557;
Z, Zost Zoxnny Zpyz || Zps ZoyZy F Zy3nZyy TZ,337;

(7.108)

Note that the coefficients of the principal displacements in the first row above
are the elements of the first row of the modal matrix. Similarly, coefficients of
the second and third rows are the elements of the second and third rows of the
modal matrix.

Suppose that the only physical displacement we are interested in is that of
mass 2, z,, then only the second row of the modal matrix is required to

transform the three displacements z , z ,, z,, in principal coordinates to z, .

pl> Zp2> Tp
This leads to the following conclusion about reducing the size of the model:

Only the rows of the modal matrix that correspond to
degrees of freedom to which forces are applied and/or for
which displacements are desired are required to complete the
model.

For this tdof model, reducing the size of the problem is not required; however,
we will see later that a realistic finite element model, with hundreds of
thousands of degrees of freedom, presents an entirely different problem.
Having the ability to reduce the problem size is critical in order to use the
detailed results of a complicated finite element model to provide accurate
results in a lower order MATLAB model.

7.10 Damping in Systems with Principal Modes
7.10.1 Overview

Damping in complex built-up mechanical systems is impossible to predict with
the present state of the art. We will discuss in this section the conditions
which determine if a damping matrix can be diagonalized, and the criterion to
enable the damped equations to be diagonalized. In general, an arbitrary
damping matrix cannot be diagonalized by the undamped eigenvectors, as the



190  Vibration Simulation Using MATLAB and ANSYS

mass and stiffness matrices can. This leads to using what is called
“proportional damping” in most finite element simulations.

If a mechanical system is designed with a specific viscous damping element,
for example a dashpot, that dominates the small amount of inherent structural
damping present, then that element can be added to the system as a viscous
damper. The resulting system is linear, but probably does not exhibit normal
modes as discussed in Section 7.2.2. In general this leads to the inability to
diagonalize and uncouple the equations of motion, requiring a state space
solution of the original, coupled equations of motion.

Viscoelastic damping treatments (damping elastomers) have been used for
years in disk drives, most typically as constrained layer dampers on the thin
sheet metal suspensions which support the read/write head. The effect of this
viscoelastic damping can be approximated at a specific temperature and
frequency as proportional damping by using the “modal strain energy”
technique in association with a finite element structural model (Johnson 1982).

Ignoring specific viscous, coulomb, and viscoelastic damping elements,
damping in typical structures arises from hysteresis losses in the materials as
they are strained, in some cases from viscous losses due to structure/fluid
interaction but more importantly from relative motion at the interfaces and
boundaries where different parts are attached or grounded. Unless a specific
damping element is used in a structural design, most structures have damping
which varies from mode to mode and will be in the range of 0.05% to 2% of
critical damping.

The modes in this chapter are all “real” or “normal” modes as defined earlier.
Once again, having normal modes means that at certain frequencies all points
in the system will vibrate at the same frequency and in phase, i.e., all points in
the system will reach their minimum and maximum displacements at the same
point in time. Chapter S discussed “complex” modes, modes in which all
points in the system do not reach their minimum and maximum displacements
at the same point in time.

7.10.2 Conditions Necessary for Existence of Principal Modes in Damped
System

With a conservative (no damping) system, normal modes of vibration will
exist. In order to have normal modes in a damped system, the mode shapes
must be the same as for the undamped case, and the various parts of the system
must pass through their minimum and maximum positions at the same instant
in time, expressed as:

«



Chapter 7 Modal Analysis ' 191

z, =z cos(wt+¢,) forthei™ mode (7.109)

A sufficient condition for the existence of damped normal modes is that the
damping matrix be a linear combination of the mass and stiffness matrices.
We know that m and k are diagonalized by operating on them with the
modal matrix. When ¢ is a linear combination of m and k, then the
damping matrix ¢ is also uncoupled (diagonalized) by the same pre- and
postmultiplication operations by the modal matrix as with the m and k
matrices (Weaver 1990, Craig 1981).
The damped equations of motion then become:

mz+cz+kz=F, (7.110)
where the damping matrix is a linear combination of m and k :

¢=am+bk (7.111)

¢, =z.¢z,, (7.112)

and where z, is the normalized (with respect to mass) modal matrix.

Writing out the complete equation:

mi +ci+kz=F (1.113)
zimz, z]'i+zlcz, z]'t vzl ke, 2,'z=2]F (7.114)
[N . DN DA S R . . V. S .

I Z ¢ Z k, z F

P p P p P P

Looking at the ¢ to ¢, conversion where ¢ =am +bk :
¢ =am+ bk (7.115)
zicz, =az'mz_+bz'kz

=al +bk,, (7.116)

where Kk is a diagonal matrix whose elements are the squares of the

eigenvalues.



192 Vibration Simulation Using MATLAB and ANSYS

The equation for the i mode is:
iy +(a+bal)z, +afz,; =F, ~(7.117)
Rewriting, defining c,, the (a + b(of) term, using notation:

¢, =a+bw =20, : (7.118)

Where {, is the percentage of critical damping for the i mode, defined as:

¢ |_ ¢ G ‘
g =[§l _2m_2mpi\/m—f (7.119)
Then:
&= atbol (7.120)
20,
Rewriting the equation in principal coordinates:
Z;+20wz, +o)izzpi =F, (7.121)

This type of damping is known as proportional damping, where the damping
for each mode (they can all be different) is proportional to the critical damping
for that mode. Since the damping is also proportional to velocity, it is of a
viscous nature. If the same damping value is used for all modes, it will be
referred to as “uniform” damping. Damping in which the damping value for
each mode can be set individually will be referred to as ‘“non-uniform”
damping.

7.10.3 Different Types of Damping
7.10.3.1 Simple Proportional Damping

Viscous damping in each mode is taken to be an arbitrary percentage, {, of
critical damping:



Chapter 7 Modal Analysis - ‘ 193

- . 2 _
2, +200z, +oz, =F,

' (7.122)
2,+20[k, 2z, +k,z, =F,

This is analogous to the familiar notation used for a single degree of freedom
system:

mZz+cz+kz=F
. €. k F . o (7.123)
Z+—z+—z=—
m m m

Define critical damping c¢_ =2vkm and define the term multiplying velocity
to be:

° = 2to,
EPRANLS
Ca ¥ M (7.124)
e
2vkm vVm
=<
m
Rewriting:
. . 2 F
Z+20m z+mz=— (7.125)
m

7.10.3.2 Proportional to Stiffness Matrix — ‘“Relative” Damping

Recognizing that the higher modes of vibration damp out quickly, “relative”
damping yields damping in proportion to frequencies in normal modes,
basically letting the “a” term for {, go to zero:

1

20, 2 7.126)

a=0

_a+baw|  bo,

&

If a value of £, for the first mode, is assumed, a value can be defined for “b”:



194  Vibration Simulation Using MATLAB and ANSYS

b5, (7.127)

. G=g, (7.128)

7.10.3.3 Proportional to Mass Matrix — “Absolute” Damping

Absolute damping is based on making “b” equal to zero, in which case the
percentage of critical damping is inversely proportional to the natural
frequency of each mode. This will give decreasing damping for modes as their
frequencies increase.

_a+bw!| a

200 | 20, (7.129)
b=0

&

If a value of {,, for the first mode, is assumed, a value can be defined for “a™
a=2,m, . (7.130)

and the value for any other mode i is:

g =95 (7.131)
o,



Chapter 7 Modal Analysis » » 195

7.10.4 Defining Damping Matrix When Proportional Damping is
Assumed

Figure 7.6: Two degree of freedom for damping example.

An interesting question to ask is what the elements of the damping matrix
should be in the two degree of freedom (2dof) problem shown in Figure 7.6 in
order to be able to diagonalize the equations of motion. We will use the
eigenvectors from the undamped case to normalize the damping matrix. Then
we will solve for the specific values of the individual dampers which will
allow the diagonalization. We will see how non-intuitive the values of
c,, ¢, and ¢, are in order to be able to diagonalize. (See Craig [1981] for a
general expression to calculate the physical damping matrix when given
proportional damping values, the original mass matrix, the diagonalized mass
matrix and the eigenvalues and eigenvectors.)

7.10.4.1 Solving for Damping Values

Starting with the undamped eigenvalues and eigenvectors:
m 0] 2k -k ¢ +c, -,
m= k = ¢cC=
0 m| -k 2k -C, C,+¢C,

. k
1, - L[t k_go
B L IV B | R IR

m

(7.132)

Solve for the diagonalized damping matrix, assuming proportional damping,
and knowing that the diagonalized stiffness matrix elements are squares of the
eigenvalues:



196  Vibration Simulation Using MATLAB and ANSYS

0 1 ‘
¢, =2lcz, = 2§{°3 . } = 2k (7.133)
2

Premultiplying by ( z) )_l and postmultiplying by (z, )'1 :

(z) 2" ¢ 2,(2,)" =2¢(2) " ké (z,)" (7.134)
— —
i I
e=2¢(zf)" ké (z,)" (7.135)

Solving for the inverses above, noting that for this 2dof system, z, = zI , and

then performing the operations on k:

The inverse of a 2 x 2 matrix can be found by:

1. Interchanging the two diagonal elements.
2. Changing the signs of the two off-diagonal elements.
3. Dividing by the determinant of the original matrix.
d -b
a b[’ |l a
c d|  |a b
c d

Table 7.2: Inverse of 2x2 matrix.

e

(7.136)



Chapter 7 Modal Analysis 197

z;lké =@E _11}\/% [(1) %}

o

(7.137)

2|1 -

. \/Zk{l «/5} [l 1} 2m

z klz =——

N FEN Y B P |
(7.138)

_2Jkm | 1+43 1-43
- 1-3 1443

4

c=2§@{1+\/§ 1-3
2 [1-43 1+43
, (7.139)

1+43 1~\/'3]

=CML—\/§ 1+3

Now we can solve for the specific values for the three dampers:

e, =t (1-43)
¢, =tkm (v3-1) | (7.140)

= {/km (.732)



198  Vibration Simulation Using MATLAB and ANSYS

¢, +¢, =¢, +¢; =CVkm (1+\/§)

¢, =¢, ={Jkm (1+«/§)—c2

y = ¢Jkm [(1+\/§)—(\/§—1]J (7.141)
=Vkm (2)

=2{Vkm

Summarizing:
¢, =¢c,=2{Jkm (7.142)
¢, = ¢{vkm (.732) (7.143)

Note that the values for the three dampers are not at all intuitive and would
have been very difficult if impossible to guess to be able to construct a
diagonalizable damping matrix. If defining the diagonalizable damping matrix
for this 2x2 problem is difficult, imagine trying to define it for a real life finite
element problem with thousands of degrees of freedom. Also, it is highly
improbable that the back-calculated damping values in physical coordinates
would match the actual damping in the structure.

7.10.4.2 Checking Rayleigh Form of Damping Matrix

We have now defined the values of the ¢,, ¢, and c,, dampers which allow

diagonalizing the equations of motion. Another interesting question is whether
the Rayleigh form has been satisfied: Is ¢ a linear combination of k and m ?

N I

We have two unknowns, a and b, and essentially two equations, since the two
diagonal elements are the same and the two off diagonal elements are the
same. First, let us look at the two off diagonal terms, equating terms on the
two sides above:



Chapter 7 Modal Analysis

199

¢km (1-+/3) = am (0)+ bk (1)

bc~/_ \/‘

Now, equating the diagonal terms:

gkm (1+4/3) = am + 2bk

=am+2[c\/%(\/§~l)}k
=am+2§\/a(\/§—1)
am=§x/ﬁ(1+\/§)—2§\/ﬁ(\/§—l)

=§\/E[1+\/§—2\/§+2]

Checking the two values for a and b by substituting back into (7.146).

(7.145)

(7.146)

(7.147)

(7.148)



200  Vibration Simulation Using MATLAB and ANSYS
1+V3 1-43] ik, [1 0

{Vkm ={,J—(m { } 3-3
1-3 1+43 m( ) 01 [ J

2w 37

(3-v3) 0 +{2\/§—2—3+1}
0 (3-43)| [V3+1 2432

=¢Jkm

=CM{1+\/§ 1—\/5}

1-V3 14433

(7.149)
So ¢ is a linear combination of k and m and the Rayleigh criterion holds.
Problems
Note: All the problems refer to the two dof system shown in Figure P2.2.

P7.1 Set m, =m, =m=1, k, =k, =k =1 and solve for the eigenvalues and

eigenvectors of the undamped system. Normalize the eigenvectors to unity,
write out the modal matrix and hand plot the mode shapes

P7.2 Normalize the eigenvectors in P7.1 with respect to mass and diagonalize
the mass and stiffness matrices. Identify the terms in the normalized mass and
stiffness matrices. Write the homogeneous equations of motion in physical
and principal coordinates.

P7.3 Convert the following step forcing function and initial conditions in
physical coordinates to principal coordinates:

a) F=1F=-3

b) z,=0,z=-2,z,=-1,2,=2

P7.4 Using the results of P7.2 and P7.3, write the complete equations of
motion in physical and principal coordinates assuming proportional damping.



CHAPTER 8
FREQUENCY RESPONSE: MODAL FORM

8.1 Introduction

Now that the theory behind the modal analysis method has been covered, we
will solve our tdof problem for its frequency response.

TR F, 2

m, ﬁ
) )‘

k, o
2
OO

Figure 8.1: tdof undamped model for modal analysis.

We will use eigenvalue/eigenvector resuits from Chapter 7 to define the
equations of motion in principal coordinates and to transform forces to
principal coordinates. We will then use Laplace transforms to solve for the
transfer functions in principal coordinates and back-transform to physical
coordinates, where the individual mode contributions will be evident. We will
discuss the relationship between the partial fraction expansion transfer
function form and the modal form derived here. We discussed in Section 5.13
how to excite only a single mode of vibration by judicious choice of initial
conditions. Here we will describe the forcing function combination required
to excite only a single mode.

We will spend considerable time in this chapter on developing a greater
understanding of how individual modes of vibration combine to give the
overall frequency response. MATLAB code is supplied for the tdof problem
to illustrate the point. ANSYS is also used to solve the tdof problem and the
ANSYS results are described and compared with the MATLAB results.



202  Vibration Simulation Using MATLAB and ANSYS

8.2 Review from Previous Results

Since the problem we are solving is frequency response, or finding the steady
state motion of each mass as a function of frequency and of applied forces,
initial conditions are not required.

From previous analyses, (7.85) to (7.88), we know the eigenvalues and
eigenvectors normalized with respect to mass, ®,, Z,:

®, =0 m2=¢\/E (,)3=¢\/g @)
m m

=2 ' (8.2)

5=
- &l -
5

Knowing that in principal coordinates the mass matrix is the identity matrix
and the stiffness matrix is a diagonal matrix with the squares of the respective
eigenvalues as terms, we can write the matrices by inspection:

100 [0 00
m =0 1 0 kp=[—]O 10 (8.3)
00 1 M0 0 3

The force vector in principal coordinates is:

Zoy Zoy Zny || B
— 2T —
Fp =z,F=|z,, 2,5 24| E 8.4)

Zoz Zpyy 23 | K



Chapter 8 Frequency Response: Modal Form 203

Expanding:

Fp] =z, K +z,F+z,,F
E,=2z,,F +z,,F +2,,,F (8.5a,b,c)
By = z5F +z2,5F +2,,F

Performing the actual problem multiplication:

L S E, B, B
NCIENERNE) BoBB
1|1 1 . 1| F F Fo
F=zF=—|— 0 —||F|=—|—-t+ 0- —*|=|F
S IR 2 | W WY N NG
o2 F_ 2%, R |7
V6 6 6. V6 V6 6]
(8.6)

Writing the resulting equations of motion in principal coordinates in matrix
form:

K, E B
1 0 0ffZ, 0 0 0|z, 3 V3 3
k B, o E
010 +—[|0 1 0 =—|— - —=
o m o m |12 2
0 0 1||Z, 00 3|z,
! T 5k _ 2% K
V6 6 e
®.7
Writing out the equations in expanded form:
.. 1
z,=(F+F+E)—=F (8.8)

v3m o



204 Vibration Simulation Using MATLAB and ANSYS

k 1 k N
3 +—z . =(E-F)——=E, — =, 8.9
Pom (F 3)x/2m ” m (52
. 3k 1 3k )
Zp3 +;Zp3:(FI—2F2 +F3)—,6_m:l:p3 E:w3 (8.10)

8.3 Transfer Functions — Laplace Transforms in Principal Coordinates

We now solve for the transfer functions. Taking the Laplace transform of
each equation, ignoring initial conditions and collecting the displacement
terms, where z ,(s) is the Laplace transform of z, (Appendix 2):

5°2,,(8) = (F(5)+ Fy(s) + F}(S))ﬁ

z,,(s)(s’ +(n§)=(Fl(s)—F3(s))—l— (8.11a,b,c)

Vam
Z,,(s) (52 + 0! ) =(F(s)-2E(s)+ FB(S))ﬁ

Solving for the three principal displacements and eliminating the “(s)” for
simplicity:

1
z,=F+F+F]——
pl ( 1 2 E)S'\/ﬁ
1
(s’ +@!)v2m
1

(sﬁ—wi)@

z,, =(F -F) (8.12a,b,c)

z,, =(F -2F, +E)

Taking the forces one at a time, the elements of a transfer function matrix can
be defined.

zy 1
E  ¢*3m
z 1

ol (8.13a,b,c)




Chapter 8  Frequency Response: Modal Form

205

2 _ 1
E (s +})V2m
%2

F2

zy -l

F, (sz+a)§)\/ﬁ
Zpp_ 1
F (s2+(o§)\/a
Zpy o 2
E, (sz+m§)\/§
N S
F3 (Sz+(1)§)\/6_m

(8.14a,b,c)

(8.15a,b,¢)

Writing out the principal coordinate transfer functions for each external force,

Fl, Fz, and F3:

Zn
K

Zp
K

7y

F |

1
(sz+m§)\/§
1

pll
Zy

p31

pl2
Z:2

Zy32

(8.16)

(8.17)



206

Vibration Simulation Using MATLAB and ANSYS

]
F3

L _| % |
F3 F3
Z,;

L3 L

(s> + @3 )om

1
s*/3m z
—1 pi3
————— e - Z
(s* + @ )v2m P
Z,33

1

(8.18)

8.4 Back-Transforming Mode Contributions to Transfer Functions in

Physical Coordinates

Now the transfer functions in principal coordinates can be back-transformed to
physical coordinates. This allows one to see the contributions of each mode,
where z; is the physical displacement at dof “i ” due to a force at dof “j.”

Zoi Zoz Zos | | Zonn Zpz Zpis Zy Zy
2=2,2,=(Zyy Zpyp Zyn | |Zpar Zpmx Zps [T Zu Zp
Zost Zazz Zos | | Zpni Zpzy Zpas Zy Zy

Zy
Zy (8.19)

Z3;

The equations below show how the resuilts from each of the principal
equations (modes) combine to give the overall response. The overall transfer
function is seen to be a combination of the three modes of vibration and is

referred to as the “modal form.”

1 _
== ZnZon T 2250 T 21320

F
! 1st mode 2nd mode 3rd mode
yA
=200 2o T Z2pnZy T 2037,
! st mode 2nd mode 3rd mode
Bz 2 tZ 7, +Z 2
n31<pll n32<p21 n33%p31
F1 —
1st mode 2nd mode 3rd mode
1 _
— = ZZon Y2020 Y2323,
F2 —_—

Ist mode 2nd mode 3rd mode

. b4 .
contributions to total =~ transfer function.

1

. Z .
contributions to total = transfer function.

1

. . V4 .
contributions to total =- transfer function.

1

L z .
contributions to total —* transfer function.

2



Chapter 8 Frequency Response: Modal Form 207

L + + tributions to total 2% transfer functi
= ZunZon + ZunZyn + ZunZyy - CoMiributions to tota ansfer function.

1st mode 2nd mode 3rd mode

z, buti Z, functi
= =2,3Z,, + 2,32, +Z,3Z,5,  contributions to total — transfer function.

2 M 2
1st mode 2nd mode 3rd mode

L + + contributions to total - transfer functi
= ZonZps + ZainZpos + Zoi3Zyas ontributions to tota ansfer function.
~—

\_—V—J 3
1st mode 2nd mode 3rd mode

zZ, b - Z, for functi
= =ZoZy3 4 ZanZyyy + ZopnZ,5;. CONtributions to total —= transfer function.
Y —_—
1st mode 2nd mode 3rd mode 3
Z, g z, .
T ZonZps + 20322, +2,33Z,5;  contributions to total —- transfer function.
—_— Y
3 1st mode 2nd mode 3rd mode 3

We saw earlier that because of symmetry there are only four distinctlgl
different transfer functions of the total of nine:

N

L 5 %
pa—
F F R

Z
F2

Expanding the four transfer functions:

_ 1 1 1 1
“n|Bm | (St damiz (s rat)Nemie

—

1 1
s (3m)+(52 +m§)2m+(s2 +w; )6m



208  Vibration Simulation Using MATLAB and ANSYS

) ), @)

8.20
s s+w T+l (8.20)
L_ 1|1 e 2
F Jm|s*/3my3 (s* +@?)J6m6
n) o ()
3m 6m
LA S L0 (8.21)

z_ 1| 1 1 I
F m[szﬁﬁ (sz+m§)m\/§ * (s2+w§)\/grﬁx/g}

3 L2t 2,2 (8.22)

=5t 0 + ol (8.23)
Taking m=k=1 yields: o =0, o =£=l, 0K =£=3, and
substituting above: " -
11 1
%11-2;32— * 522-1-1 * sziS (8:29)
11 ;



Chapter 8 Frequency Response: Modal Form 209

11 1
Z_3__2 ,_6

o3 8.26

FE s §+1 s°+3 (8.26)
12

Z, 3 3

E, s §'+3 ®.27)

8.5 Partial Fraction Expansion and the Modal Form

Another way of finding the modal form (not as insightful, but does not require
solving the eigenvalue problem) is to take the original transfer functions
derived in the Chapter 2 and perform a partial fraction expansion. Partial
fraction expansion gives the same results as the modal form in Section 8.4.
The four unique transfer functions from (2.62) to (2.65) are repeated below:

z, _ m’s*+3mks’ +k° ‘ (8.28)
F & (m3s4 +4m°ks” + 3mk? ) ’
NI S— C (829)
E  s°(m°s”+3km) :

z, Kk’

i B 8.30
E ¢ (m’s'+4m’ks’ +3mk’) 7 ®-30)
zZy _ m’s* + 2mks® + k’ 8.31)
E, §° (m3s4 +4m?ks® + 3mk> ) .

In order to perform a partial fraction expansion, we need the roots of the
characteristic equation, found earlier to be:

=0 = k o =— (8.32)
m .

Taking the z /F, transfer function and expanding in partial fraction form,
settingm=k = 1;



210  Vibration Simulation Using MATLAB and ANSYS

z, _ m’s* + 3mks? + k2 _ost437 41 st +3s7+1
E ¢ (m3s4 +4m’ks? +3me) s(s* +4s* +3)  sP(s* +wi)(sP + i)

s*+3s” +1 __.A . B _C
SET+)P+0) S+l ST+l ST+l

(8.33a,b)

The terms A, B and C, known as “residues,” are evaluated using the “cover-
up” method, where each coefficient is evaluated by “covering up” its term in
the transfer function and evaluating the remaining expression at s*> = — @’

b -

Evaluating A:

s*+3s* +1

= " evaluated at s> = -’ =0
(" +@)(s* +@}) o,

(8.34)
- 1 1
o0 (OB 3
Evaluating B:
4 2
= % evaluated at s* = -, =1
s°(s” + ;)
(8.35)
o -30,+1  1-3+1 -1 1

T Lo(w+e)) -1-1+3) 2 2



Chapter 8 Frequency Response: Modal Form 211

Evaluating C:

_ s*+3s7 +1
$ (57 + @ )(s° + @)

evaluated at s> =-@ = -3

of =30l 4l P33+l 1

-0} (-0} +®})  -3(-3+1) 6

(8.36)
Combining terms:

HENHNG
z _ s*+3s% +1 _ 3] l2] L6 837)

F s +o)s*+a))  sP+of  sT+wr P+l

This expression is the same as the term for z, /F in (8.20). Converting the

other three transfer functions to partial fraction form also reveals their modal
form.

8.6 Forcing Function Combinations to Excite Single Mode

It is instructive at this point to see what types of forcing function combinations
will excite each of the three modes separately. From the definition of normal
modes, we know that if the system is started from initial displacement
conditions that match one of the normal modes, the system will respond at
only that mode. An analogous situation exists for combinations of forcing
functions. Repeating the transformed equations of motion in principal
coordinates from (8.12a,b,c) with m=1.

1

Zpl =(Fl +F2 +F3)S—2—\/'§:Fp]

=(R —Fs)——(82 N =F, (8.38a,b,0)
2

2, =(F—2F, +F ) =F

(s2+0)§)«/g p3

sz

To excite only the first mode, we can start with initial displacements being any
multiple of the first eigenvector, which has equal displacements for all masses.



212 Vibration Simulation Using MATLAB and ANSYS

Now let us see if applying equal forces to all three masses with zero initial
conditions excites only the first mode. Set F =F, =F #0, which should

excite only the first, rigid body mode:

1 1
Zpl =(F1+F2 +F3)—Sz—\/.?=3Fl S—l;/—g

1
z,=(E-F)———=0 8.39a,b,c
=R (83920
Zp3=(E—2F2+F3)—1—=0

(s*+a?)V6

We can see above that the motion for the second and third modes is zero. It is
the information contained in the eigenvector, which, when multiplied by the
force vector in physical coordinates, determines the force vector in principal
coordinates.

To excite the second mode only, applying zero force at mass 1 and equal and
opposite sign forces at masses 1 and 2 should work: F, =-F,, F, =0:

1
z, =(F +F2+1?3)SZJ§=O
1 1
——==2F
(s2+m§)\/§ 1

2,y =(F, ~2F, +F)———— =0

(sz+(0§)\/€

z,= (F-F) (8.40a,b,c)

In this case the combination of the eigenvectors and forcing function signs
cancel out the first and third modes, leaving only the second mode.

To excite the third mode only, applying the same force to masses 1 and 3 and
twice the force with opposite sign to mass 2 should work: F =F,, E, =-2F:



Chapter 8 Frequency Response: Modal Form 213

z, =(E+EF,+F)——==0
pl (1 2 3)52\/5

1
z,=(F-F)————=0 8.41ab,c
p2 (1 3)(Sz+0)§) (—‘2 ( )
2, =(F,~2F, +F, ) = 6F, ——

(sz+m§)\/—6_ ' (s2+u)§)\/g

In this case the combination of the eigenvectors and forcing function signs
cancel out the first and second modes, leaving only the third mode.

8.7 How Modes Combine to Create Transfer Functions

We have shown that both the normal mode method and partial fraction
expansion of transfer functions yield additive combinations of sdof systems for
the overall response. The purpose of this section is to develop a general
equation for any transfer function, again showing that the system frequency
response is an additive combination of sdof systems. Each sdof system has a
gain determined by the appropriate eigenvector entries and a resonant
frequency given by the appropriate eigenvalue.

The three equations of motion in principal coordinates are:

. 2 _
Zpl + 0)1 Zpl - Fpl

Z,+ Wz, =F, (8.42a,b,)
ip3 + w§Zp3 = Fp}
3 ,
=0 w-X =% (8.43a,b,0)
m m
Where the forces in principal coordinates are given by:

Zott Zoni Zny || B

FP = Z;I;F = an2 Zn22 Zn32 Fz

Zys Zopn Zoy || B
(8.44)

ZnllFl + Zn21F2 + zn31F3
=|z,,F +2,,F +2;F
z2,,F +2,,5F + 2K



214  Vibration Simulation Using MATLAB and ANSYS

Taking the Laplace transform of the differential equations (8.42a,b,c) and
dividing by the coefficients of each principal displacement:

1 anlF + ZnZlF + Zn}lF

52 + o
z.,F + 2,,,F + 2,5

-
E,
s*+a)
z
z = zpl _|
=z, |=
P P SZ+(D§
Z, .
p3
s>+

st +
an3F + Zn23F + Zn33F

s+

(8.45)

The equation above shows how the individual eigenvector matrix elements
contribute to the displacements in principal coordinates.

Since we are only interested in SISO transfer functions that arise from a force

applied to a single dof, we will look at the F, F,, F, cases individually.

For force F:

For force F,:

B 1T z,, K |
s°+ o s*+ b

FpZ _ anZFl
S+l | | s +ad

Fp3 z,;E
[ +a) | [T+l

( FP1 I z,,E
st +of s +ay
Fo _ Z.nh
s+ s°+ ol
E, Zn23F2

| s+ @) J LS +@; |

(8.46)

(8.47)



Chapter 8 Frequency Response: Modal Form 215
For force I,
By [ Z,3 5 |
. S2 + 0)12 52 + (1)12
pl F
z,,F
z,=|z, |=| 525 =] 22 8.48
2 s+l $* + o (8.48)
Zp3
P Fp3 Zn33F3
sl | [8THal ]

The equations for displacements in physical coordinates are found by
premultiplying the above three equations by z, (7.107).

For F:

Dividing by F:

N

FZnIIZnIIFI Z,:ZasB | Zoi3ZassE 1
s+ s+ s+ @
ZoZanBl | ZanZapB | ZapZash
2. 2 TS 2, .2
s”+ O s” + @, §° +
23 ZaiB | ZonZapll | ZenZasH

2, .2 2
s*+ o $°+ o} sT+al
{ ZotZant | ZapZaz | ZonnZa W
2
ss+af ST+l ST+
ZinZant , ZonZoz |, ZansZans
2 2t 3 2, .2
s+ S+ st + ol
Zp31Zn1 |, Zn32Zn1z | Zo3sZniz
2 2 T2 2, .2
s+ sTHel st 4ol

(8.49)

(8.50)



216  Vibration Simulation Using MATLAB and ANSYS

Similarly for F andF,:

z ZonZoat | ZopZoz | ZoisZans
F ss+of  sP+e ST+l
2 o ) 3
Z _|Z || ZarrZenr | ZanZan |, ZonsZens (8.51)
2, .2 2, 2 2, 2 :
E, ) S+ sTH@, 5T+
Z3 Zy312p2) 4 Zontan | Zy33Zn23
2, 2 2 2 2, 2
LE | [s°+0] s +0, s+ |
1T _
Z ZanZont | ZoZon |, ZasZan
2, 2 2, 2 2, 2
E sSTHm  sT+m;, ST+
Z % || Bty | ZanZon |, ZanZans  (8.52)
F, |E S+a)  sT+al s+l '
3 3 @, 5 3
z ZontZast | ZonnZan | ZonsZass
2, 2 2, 2 2, .2
LF3 | 8"+ oy s+w,  sT+w

The nine transfer functions above may be generalized by the following
equation. For the transfer function with the force applied at dof “k,” the
displacement taken at dof “j” and for mode “i”:

Z;  ZyZyg | ZypZu: | ZopZus (8.53)

J
E s’+0 s+ s+t

Rewriting in summation form, and generalizing from our tdof system to a
general system where “m” is the total number of modes for the system for an
undamped (8.54a) and damped (8.54b) system:

(8.54a,b)

Z _ i Z i Zog
E Ts+2los+a’

Equations (8.54a,b) shows that in general every transfer function is made
up of additive combinations of single degree of freedom systems, with
each system having its dc gain (transfer function evaluated with s = j0)
determined by the appropriate eigenvector entry product divided by the



Chapter 8 Frequency Response: Modal Form 217

square of the eigenvalue, z_z /@', and with resonant frequency

nji

defined by the appropriate eigenvalue, ..

For our tdof system, substituting for the @, values:

Zi  ZyZyy Z2Z50 Z3Zn3 8.5
— — + +— (8.55)
E, s s"+k/m s +3k/m

This equation makes the graphical combining of modal contributions to the
final transfer function more clear. The contribution of each mode is a simple

harmonic oscillator at frequency ®, with dc gain z .z . / @, where “i " is the

nji

mode number.
8.8 Plotting Individual Mode Contributions

Taking z, /F, for example, the separate contributions of each mode to the total

response can be plotted as follows. First we calculate the DC response of the
non-rigid body mode:

Rigid body response: at ® = 0.1 rad/sec z;;; = ﬁ =33.33 =30.457 db,
slope =2

Now we calculate the dc gain of the non-rigid body modes:

= (0.5 =—-6db, slope =0

N[ =

Second mode response: at DC, z;;; =

(N]

resonance at ®, =1, slope at oo =-2

&

Third mode response: at DC,z;3= 1—18—: 0.0555 =‘—25.1db, slope =0

resonance at ®; =3, slope at o = -2, where the
“ijk” notation in zy indicates: dof “i,” due to force

(1331}

7,” for mode k.

Thus, the total response is defined by the additive combination of three single
degree of freedom responses, each with its own spring-dominated low



218  Vibration Simulation Using MATLAB and ANSYS

frequency section, damping dominated resonant section and mass dominated
high frequency section.

The MATLAB code tdof_modal_xfer.m is used to calculate and plot the
individual mode contributions to the overall frequency response of all four
unique transfer functions for the tdof model. The program plots the frequency
responses using several different magnitude scalings. We will discuss below
the results for the z, /F, frequency response, using plots from the MATLAB
code to illustrate. The notation “z113” below signifies the transfer function
z1/F1 for mode 3, and so forth.

Transfer Function - 2111, 2112, 2113 and z11 Magnitude

—— - —

—— z111-tst Mode
0~~~ T — -~ 7 - e — - —— z112-2nd Mode
b —e— 2113-3rd Mode

= z11-Total

T T T TT
i

Magnitude, db

Frequency, rad/sec

Figure 8.2: z11 transfer function frequency response plot with individual mode
contributions overlaid.

Figure 8.2 shows the overall z,/F (zl1) transfer function and the individual

modal contributions which add to create it. Because the magnitude scale in
Figure 8.2 is in log or “db” units, the individual mode contributions cannot be
added graphically. To add graphically requires a linear magnitude axis. We
cannot use the log magnitude or db scale for adding directly because adding
with log or db coordinates is equivalent to the multiplication of responses, not
addition.

There is zero damping in this model, so the amplitudes at the two poles in
Figure 8.2 should go to infinity. The peak amplitudes do not go to infinity
because they are limited by the resolution of the frequency scale chosen for the
plot. The two zeros should go to zero, but once again they do not because of
the frequency resolution chosen.



Chapter 8 Frequency Response: Modal Form 219

Figures 8.3 and 8.4 show the same frequency responses plotted on a linear
magnitude scale.

Transfer Function - 2111, z112, 2113 and z11 Linear Magnitude

T

35

~t— z111-1st Mod

—— 2112-2nd Mode
—e— z113-3rd Mode []
— z11-Total

Magnitude

Frequency, rad/sec

Figure 8.3: z11 frequency response and modal contributions plotted with linear magnitude
scale.

Figure 8.4 uses an expanded magnitude axis to more clearly show how the
three individual mode sdof responses combine graphically to create the overall
frequency response. It also contains notation that shows how the signs change
through the resonance. In Chapter 3 we learned how to sketch frequency
response plots by hand, knowing the high and low frequency asymptotes and
the locations of the poles and zeros. Similarly, we can combine modes by
hand if we know the signs (phases) of the individual modes that are being
combined. In our tdof example, it just so happens that the signs of the low
frequency portions of the second and third modes (1.0 and 1.7 rps) were both
positive. In general, it is not the case that all low frequency signs will be
positive (see the z31 example below). The discussion below will show how to
define the sign (phase) of the low frequency portion of each mode by knowing
the signs of the eigenvector entries for the input and output degrees of
freedom.



220  Vibration Simulation Using MATLAB and ANSYS

Transfer Function - 2111, 2112, 2113 and z11 Linear Magnitude

— ¢ . — —
| | i ) "y
| I |
"." sign ! {
rigid-body | ‘ ' 2113-3rd Mode
2.5--  mode boo - z11-Total
|
| | |
I t t
i i i
] ] ]
2F - vevsign L Tt e
| R T R t 1 I (S
before | | ™" sign after, [ [
resonance ' | resonance | i | b
| | | i i [
1rps mode | | 1rps "\‘Ode | o 1
- T
i
I

Magnitude
[3,]
T
I
I
I
I
I
I

T
|
|
|

/ before |
b

] T
| I
| I
| |
before : :
1} - - - / - — resonance - — H /,~ — — resonance .
1 rps mode \ 1.7rps [ (]
. ( 1 mode I I [
| 1 I 1 | [ [
( | 1 I 1 | 1 { [
+ . | o el [
RS, ST o - sign after
0.5 T..:..“si;: o RS :7 ‘resonance |, :- T"
/ : before : 1.7 rps : :
4 | resonance | mede [
o (+)’ 1‘1.7rps " " . Lot
1 mode 0 ’1
10 10 N 10
zero at Frequency, rad/sec zero at
0.62 rps 1.62 rps

Figure 8.4: z11 frequency response with expanded magnitude scale to see contributors to
the zeros.

Since the phase at frequencies much lower than the resonant frequency is zero
for a spring mass sdof system (2.19b), and since each mode in principal
coordinates is a sdof system, the phase for each mode contribution to the
overall response at low frequency is given by the sign of the eigenvector
for the dof whose displacement is desired times the sign of the dof where
the force is applied. For the three modes and the transfer function z11, where
we are interested in measuring the displacement of mass | and in the force
being applied to mass 1, the signs for the three modes at low frequencies are
found as follows. The normalized modal matrix is repeated to see the signs of
the entries:



Chapter 8 Frequency Response: Modal Form 221

Mode 1 Mode 2 Mode 3

dof 1 —0.5774 | -0.7071 0.4082

dof2 -0.5774 0.0000 —0.8165

dof3 —0.5774 0.7071 0.4082

Table 8.1: Normalized modal matrix.

Sign of mode 1 low frequency asymptote for z11 frequency response:

dof 1, mode 1: —0.5774 (-)
dof 1, mode 1: -0.57744 (-)

Low frequency sign (phase) = (~) times (-) = (+), but since
resonance is rigid body at zero rad/sec, all frequencies of interest to
us are “after resonance” and thus the sign is (—) because the phase is

—180°.

Sign of mode 2 low frequency asymptote for z11 frequency response:

dof 1, mode 2: -0.7071 ()
dof 1, mode 2: -0.7071 (-)
Low frequency sign (phase) = () times (=) = (+), 0°

Sign of mode 3 low frequency asymptote for z11 frequency response:

dof 1, mode 3: +0.4082 (-)
dof 1, mode 3: +0.4082 (-)

Low frequency sign (phase) = (+) times (+) = (+), O°

As mentioned earlier, the signs of the low frequency portions of the second
and third modes were both (+). The signs of the eigenvector entries above
show why this was the case.



222 Vibration Simulation Using MATLAB and ANSYS

The “sign” of the rigid body mode is always *“ - because the phase is always
—180°. The signs of the 1 rad/sec (rps) and 1.732 rps modes are both “+” at
low frequencies because their phases are (°. After the resonance, their signs
change to “—" as phase goes to —180°. Exactly at resonance the phase of
each is —90°, however, away from resonance the phases are either 0° or
—180° because the problem has no damping.

Thus, if the low frequency asymptote sign (phase) is known for each mode, the
SISO frequency response zeros can be identified as frequencies where the
appropriate modes add to zero algebraically, as can be seen graphically on
Figure 8.4.

The z11 zeros at 0.62 and 1.62 rps arise when the contributions of the three
modes combine algebraically to zero.

For other transfer functions, for example z31, the low frequency signs would
be different, as can be seen below:

Sign of mode 1 low frequency asymptote for z31 frequency response:

dof 3, mode 1: —0.5774 (-)
dof 1, mode 1: -0.5774 (-)

Low frequency sign (phase) = (—) times (-) = (+), but is after

resonance so sign is (—)

Sign of mode 2 low frequency asymptote for z31 frequency response:

dof 3, mode 2: +0.7071 (=)
dof 1, mode 2: —0.7071 (-)

Low frequency sign (phase) = (+) times (-) = (), —180°

Sign of mode 3 low frequency asymptote for z31 frequency response:

dof 3, mode 3: +0.4082 (-)

dof I, mode 3: +0.4082 (-)



Chapter 8  Frequency Response: Modal Form 223

Low frequency sign (phase) = (+) times (+) = (+), 0°

Now that the low frequency phases of the individual modes are defined, we
can follow the combining of modes to get the overall response, indicated by
the “+” signs.

Because we are dealing with a linear magnitude axis above, we can
graphically add or subtract the contribution of each to get the overall response.

To get the overall response we combine the amplitudes of each mode
depending on its sign. For example, at 0.4 rad/sec frequency, we combine the
amplitude of the rigid body mode with a negative sign with the two oscillatory
modes, each of which has a positive sign:

Rigid body response: at @ = 0.4 rad/sec, @, =0:

1 -1 -1
—2=.—2=—2=_7=—2.083 (856)
3 33wy 3w’ 3(0.4)

2y =

Second mode response:  at ® = 0.4 rad/sec, w, =1:

Z,, = L = L = ! = ! =0.595
Tt e 2o +e}] 2[- +m§] 2[-(042+1]
(8.57)
Third mode response: at @ = 0.4 rad/sec, @, =1.732:
1 1 1 1
Z = = = = = 00586
P 6[(j0) )] 6[-0’+a)]  6[-(0.4)+3]
(8.58)

Adding (with proper signs) the three contributions at 0.4 rad/sec gives the
amplitude and phase of the overall response at 0.4 rad/sec:

—2.083+0.595+0.0586 = —1.4294 (8.59)

The amplitude is 1.4294 and the phase is —180°, as indicated by the negative
sign. Because the model has no damping, each mode has 0" phase before



224  Vibration Simulation Using MATLAB and ANSYS

resonance and immediately after resonance switches phase to —180°. Exactly
at resonance the amplitudes are theoretically infinite.

Let us now track what happens at the frequency of the first zero, which we
showed in (2.85) to be 0.618 rad/sec. We will carry out the same calculations

as above for a frequency of 0.618 rad/sec:

Rigid body response: at ® =0.618 rad/sec, o, =0:

1 -1 -1
A = —= f o —
M3 3(jw) 3w’ 3(0.618)°

=-0.8727 (8.60)

Second mode response:  at @ = 0.618 rad/sec, ®, =1:

1 1 1
Z = = = = 0.8089
U +a]) 2o+ ] 2[~(0.618) +1]
(8.61)
Third mode response: at ® =0.618 rad/sec, @, =1.732: -
1 1 1
2,3 = = = = 0.0636
U6 +0))  6[(jo) +a?]  6[~(0.618) +3]
(8.62)

Adding (with proper signs) the three contributions gives the amplitude and
phase of the overall response at 0.618 rad/sec:

—0.8727 +0.8089+0.0636 = —0.0002 =0 : (8.63)

The amplitude is —0.0002. With greater accuracy in the values used for the
eigenvalues and the frequency of the zero, the solution would have been
exactly zero.

In Chapter 2, we showed that the zeros for SISO transfer functions arose from
the roots of the numerator. The modal analysis method shows another
explanation of how zeros of transfer functions arise: when modes combine
with appropriate signs (phases) it is possible at some frequencies to have
no motion.

We will calculate the response at one more frequency to show how the phase
changes for a mode when the frequency is higher than the resonant frequency.



= Ak

Chapter 8 Frequency Response: Modal Form : : : 225

We will choose a frequency of 1.3 rad/sec, which is higher than the second
mode but lower than the third mode. We should see that the sign of the
contribution for the second mode changes sign from positive to negative.
Signs for the first and third mode should remain unchanged.

Rigid body response: at ® = 1.3 rad/sec, ®, =0:"

PP SO S S N STV (8.64)
37 3(w’ 3o 3(1.3) :

Second mode response:  at ® = 1.3 rad/sec, @, =1:

1 1 1
z,, = = = =—0.7246
P2 o) 2f(u+ed]  2[-13) +1]
(8.65)
Third mode response: at ® = 1.3 rad/sec, », =1.732:
1 1 1
. = - = =0.1272
PeE ) 6[(j0) v} ] 6[-(1.3)+3]
(8.66)

Adding (with proper signs) the three contributions at 1.3 rad/sec gives the
amplitude and phase of the overall response at 1.3 rad/sec:

—0.1972-0.7246 +0.1272 = —0.7946 (8.67)

The amplitude is 0.7946 and the phase is —~180°. Note that the sign of the
second mode contribution changed from positive to negative when the
resonant frequency was passed.

The same calculations can be repeated for any desired frequency. Also,
knowing the high and low frequency asymptotes, their signs and resonant
frequencies, one can plot the overall frequency response roughly by hand,
similar to what was done in Section 3.3. Here, unlike the previous hand
plotting, we have not calculated any =zeros; they occur by additive
combinations of individual modes.



226  Vibration Simulation Using MATLAB and ANSYS

8.9 MATLAB Code tdof_modal_xfer.m — Plotting Frequency Responses,
Modal Contributions

8.9.1 Code Overview

Figures 8.2 to 8.4 were plotted using this code. The code uses (8.24 to 8.27)
to evaluate the four transfer functions z11, z21, z31 and z22. Each of the
transfer functions also has its modal contributions calculated and plotted as
overlays. The frequency response plots are all plotted with log and db
magnitude scales as well as a linear scale which is expanded in the fourth plot
of the series. Because of the amount of code used for the plotting, only the
code for the zll transfer function will be listed. All the other transfer
functions are calculated in a similar fashion.

8.9.2 Code Listing, Partial

% tdof modal xferm plotting modal transfer functions of three dof model
clf;
legend off;

subplot(1,1,1);

clear all;
% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10”-1 = 0.1 rad/sec, and 1 is
% 10”1 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,150);

% calculate the rigid-body motions for low and high frequency portions

% of all the transfer functions
% z11, output 1 due to force 1 transfer functions

z111num = 1/3;
zl11lden=[100];
z112num = 1/2;
z112den=[101];
z113num = 1/6;
z113den=[1 0 3);

[z111mag,z111phs] = bode(zl 1 1num,z111den,w);




Chapter 8 Frequency Response: Modal Form

227

%

%

[z112mag,z1 12phs] = bode(z1 12num,z1 12den,w);

[z113mag,z1 13phs] = bode(z1 1 3num,z1 13den,w);
if abs(zl11phs(1))>=10
zl 1 1text="(-)';
else
z111text ="(+)};
end
if abs(z112phs(1)) >=10
z112text ="(-)';
else
z112text ='(+);
end
if abs(z113phs(1)) >= 10
z113text ="(-)';
else
z113text ="(+)
end
z111magdb = 20*log10(z111mag);
z112magdb = 20*log10(z1 12mag);
z113magdb = 20*log10(z1 13mag);
calculate the complete transfer function
z11 = ((1/3)./(G*w)."2) + ((1/2)./(G*W). 2 + 1)) + ((1/6)./((G*w).~2 + 3)));
z1 lmag = abs(z11);
z1 Imagdb = 20*log10(z1 1mag);
z11phs = 180*angle(z11)/pi ;
truncate peaks for microsoft word plotting of expanded linear scale

z1 Iplotmag = z1 Imag;




228

Vibration Simulation Using MATLAB and ANSYS

%
%

%

z112plotmag = z112mag;

z113plotmag = z113mag;

for cnt = l:length(zl 1mag)
if z11plotmag(cnt) >= 3.0
z11plotmag(cnt) = 3.0;
end
if z111plotmag(cnt) >= 3.0
z111plotmag(cnt) = 3.0;
end
if z112plotmag(cnt) >=3.0
z112plotmag(cnt) = 3.0;
end
if z113plotmag(cnt) >= 3.0
z113plotmag(cnt) = 3.0,
end
end
plot the three modal contribution transfer functions and the total using
log magnitude versus frequency
loglog(w,z111mag,'k+-',w,z1 12mag,'kx-',w,z1 1 3mag,'k.-',w,z1 Imag,'k-")
title("Transfer Functions - z111, 2112, z113 and z11 magnitude')
legend('z111-1st Mode','z112-2nd Mode','’z113-3rd Mode','z1 | -Total’)
text(.11,1.2*z111mag(1),z111text)
text(.11,1.2*z112mag(1),z112text)
text(.11,1.2*z113mag(1),z1 1 3text)
xlabel('Frequency, rad/sec")
ylabel('"Magnitude')
grid
disp(‘execution paused to display figure, "enter" to continue'); pause
plot the four transfer functions using db
semilogx(w,z111magdb,k+-',w,z1 12magdb,'’kx-',w,z113magdb,'k.-',w,z1 Imagdb,’k-")

title("Transfer Function - z111, z112, z113 and z11 Magnitude')
legend('z111-1st Mode','z1 12-2nd Mode','z113-3rd Mode','z1 1-Total’)




Chapter 8  Frequency Response: Modal Form 229

%
%

%

text(.11,2+z1 1 Imagdb(1),z111text)
text(.11,2+z112magdb(1),z112text)
text(.11,2+z113magdb(1),z113text)
xlabel('Frequency, rad/sec")
ylabel(*Magnitude, db")

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

plot the four transfer functions using a linear magnitude scale so that
the amplitudes can be added directly

semilogx(w,z1 1 Imag,'k+-',w,z112mag,'’kx-',w,zl I 3mag,'’k.-',w,z1 Imag,'’k-")
title('Transfer Function - z111, z112, z113 and z11 Linear Magnitude')
legend('z111-1st Mode','z112-2nd Mode','z113-3rd Mode','z11-Total")
text(.11,1.0*z11 1mag(1),z111text)

text(.11,1.1*z112mag(1),z1 12text)

text(.11,1.1*z113mag(1),z1 | 3text)

xlabel("Frequency, rad/sec')

ylabel("Magnitude')

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

semilogx(w,z111plotmag,'k+-',w,z1 12plotmag,'’kx-',w,z1 1 3plotmag,’ ...
k.-',w,z11plotmag,'k-")

title('Transfer Function - z111, z112, z113 and z11 Linear Magnitude")

legend('z111-1st Mode','’z112-2nd Mode','z113-3rd Mode','z11-Total')

text(.11,1.0*z111mag(1),z111text)

text(.11,1.1*z112mag(1),z112text)

text(.11,1.1*z113mag(1),z113text)

xlabel('Frequency, rad/sec')

ylabel('Magnitude")

axis([.1 10 0 3]);

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

plot phase

semilogx(w,z111phs,’k+-,w,z1 12phs,'kx-',w,z113phs,'k.-,w,z1 1 phs,'k-")
title('Transfer Function - z111, z112, z113 and z11 Phase')
legend('z111-1st Mode','z112-2nd Mode','z113-3rd Mode','z1 1-Total")
xlabel("Frequency, rad/sec')

ylabel('Phase, Deg')

grid

disp(‘execution paused to display figure, "enter" to continue'); pause




230  Vibration Simulation Using MATLAB and ANSYS

8.10 tdof Eigenvalue Problem Using ANSYS

An ANSYS solution to the tdof problem is now shown in order to start
becoming familiar with how ANSYS presents its eigenvalue/eigenvector
results.

8.10.1 ANSYS Code threedof.inp Description

The ANSYS code threedof.inp below is used to build the model, calculate
eigenvalues and eigenvectors, output the frequency listing and eigenvectors,
plot the mode shapes, calculate and plot all three transfer functions for a
forcing function applied to mass 1: z /F,z,/F,and z,/E. The hand

calculated values for masses and stiffnesses are used, ml = m2 = m3 = 1.0,
k1 =k2=1.0.

To run the code, from the “begin” level in ANSYS, type “/input,threedof,inp,”
and the program will run unattended. The various outputs are available as
follows:

threedof.frq frequency list, ascii file

threedof.eig eigenvector list, ascii file

threedof.grp2  mode shape plots
threedof.grpl  frequency response plots

Use the ANSYS Display program to load and display the two plot files.

8.10.2 ANSYS Code Listing

ftitle, threedof.inp, three dof vibration class model, Ansys Version 5.5
/prep7 ! enter model preparation section
! element type definitions

et,1,21 ! element type for mass
et,2,14 ! element type for spring

! real value definitions

r,1,1,1,1 ! mass of 1kg
r,2,1 ! spring stiffness of Imn/mm, or In/m

! define plotting characteristics

/view,1,-1,0,0 ! z-y plane
/angle,1,0 ! not iso




Chapter 8 Frequency Response: Modal Form ' 231

/pnum,real, ] ! color by real

/mum, 1 ! numbers off

/type,1,0 ! hidden plot

/pbe,all,1 ! show all boundary conditions
csys,0 ! define global coordinate system
! nodes

n,1,0,0,-1 ! left hand mass at x = -1.0 mm
n,2,0,0,0 ! middle mass at x =0 mm
n,3,0,0,1 ! right hand mass at x = +1.0 mm

! define masses

type,1
real,l
el
e2
e3

! define springs

type,2
real,2
e, 1,2
€,2,3

! define constraints, ux and uy zero, leaving only uz motion
nsel,s,node,,1,3

d,all,ux,0

d,all,uy,0

allscl
eplo

1 kskokkorsok ok dokkok ok ok cigcnvalue run RRRRR Rk skk kR ko

fini ! fini just in case not in begin
/solu ! enters the solution processor, needs to be here to do editing below
allsel ! default selects all items of specified entity type, typically nodes, elements

! define masters for frequency response (transfer function) run

m,1,uz
m,2,uz
m,3,uz

antype,modal,new

modopt,reduc,3 ! method — Block Lanczost

expass,off ! key = off, no expansion pass, key = on, do expansion
mxpand,3,,,no ! number of modes to expand




232 Vibration Simulation Using MATLAB and ANSYS

total,3,1 ! total masters, all translational dof

allsel

solve ! starts the solution of one load step of a solution sequence, modal
fini

%ok ek sk kok sokokok ok ok ke ok ok output ﬁequencies ek o o o ok ok ok 3 ok ok ok ok ok ok o ok ok ok

/postl

/output,threedof,frq ! write out frequency list to ascii file .frq
set, list

/output,term ! returns output to terminal

! S e e ok ke ok ok o ok o ok 3 ok ok ok K Output eigenvectors
! define nodes for output
allsel
/output,threedof,eig : ! write out eigenvectors to ascii file .eig
*do,i,1,3

set,,i

prdisp

*enddo

/output,term
e 3k o o e ke o ok ok ok ok ok ok ok plot modes Sk e e ok ok b ke e ok o ok 3k ok Ak ok ok ok

/show,threedof,grp2,0 ! raster plot, 1 is vector plot, write out to graph file .grp2
allsel
*do,i,1,3
set,1,i

pldi,1
*enddo
/show,term
! 6 ok e ok o o o e sk cle e ok ke Calculate and plot transfer ﬁlnctions ok A e e ok e e sk ke o sk ke ok ke e ok ke
fini
/assign,rst.junk,rst ! reassigns a file name to an ANSY identifier
/solu

dmprat,0 ! sets a constant damping ratio for all modes, zeta =0




Chapter 8 Frequency Response: Modal Form » : 233.

allsel
eplo ! show forces applied
f,1,fz,1 ! 1 mn force applied to node 1, left-hand mass

ftitle, threedof.inp, tdof, force at mass 1

antype,harmic ! harmonic (frequency response) analysis
hropt,msup,3 ! mode superposition method, nummodes modes used
harfrq,0.0159,1.59 ! frequency range, hz, for solution, -1 to 10 rad/sec
hrout,off,off ! amplitude/phase, cluster off

kbe,1

nsubst,200 1200 frequency points

outres,nsol,all, ! controls solution set written to database, nodal dof solution, all

! frequencies, component name for selected set of nodes

solve

fini

/post26 : -

file,rfrq ! frequency response results

xvar,0 ! display versus frequency

lines, 10000 ! specifies the length of a printed page for frequency response listing
nsol,2,1,u,z,z1 ! specifies nodal data to be stored in results file

! - displacement, z direction
! note that nsol,1 is frequency vector

nsol,3,2,u,z,22
nsol,4,3,u,z,z3

! plot magnitude
plepix,0

/grid,1

/axlab,x,frequency, hz
/axlab,y,amplitude, mm

/gropt,logx, 1 ! log plot for frequency
/gropt,logy, 1 ! log plot for amplitude
/show,threedof,grp1l ! file name for storing
plvar,2,3 .4

/show,term




234  Vibration Simulation Using MATLAB and ANSYS

! plot phase

pleplx, 1

/grid, 1

/axlab,x,freq

/axlab,y,phase, deg ! label for y axis
/gropt,logx, 1 ! log plot for frequency
/gropt,logy,0 ! linear plot for phase

/show,threedof,grpl

plvar,2,3,4

/show,term

! save ascii data to file

preplx, 1 ! stores phase angle in asci file .dat
/output,threedof,dat

prvar,2,3.4

/output,term

fini

8.10.3 ANSYS Results

1
1.0E+Q3 ]
1 .0E+02 J
] ~, A
t .OE+OJ B
'3 E
£ 1
« 1.0E+00 3
L 1 i
© 1
S 1.0E-01 7 ¥
+ ]
- ]
— zl
. 1.0£-027
=1 3
o
1.0E-03 E|
] \\ "
1.0E-04 3
1.0E-053 \ z3
1.0E-06 T T T T i T T T T T
1.0E-02 1.0E+0C
1.0E-01 1.0E+01

frequency ., hz

threedof.inp, three degree of freedom, force at mass 1

Figure 8.5: ANSYS frequency responses for force ‘at mass 1.



Chapter 8  Frequency Response: Modal Form 235

The resulting ANSYS transfer function plot is shown in Figure 8.5, with the
frequency axis in Hz, not rad/sec.

The ANSYS frequency listing from threedof.frq is shown below, in hz units:

**+i% INDEX OF DATA SETS ON RESULTS FILE *****

SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE

1 0.47280E-06 1 1 1
2 0.15915 1 2 2
3 0.27566 1 3 3

Note that the rigid body mode is calculated to be 0.4726e-6, close to 0 hz.
The second and third modes are calculated to be 0.15915 and 0.27566 hz, or
0.999969 and 1.732 rad/sec, respectively. This is the same as our hand-
calculated results.

The ANSYS eigenvector listing from threedof.eig is below:

*DO LOOP ON PARAMETER=1 FROM 1.0000 TO 3.0000 BY 1.0000

USE LOAD STEP 1 SUBSTEP 1 FOR LOAD CASE 0
SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION=
1

TIME/FREQUENCY= 0.47280E-06
TITLE= threedof.inp, three dof vibration class model, Ansys Version 5.5

PRINT DOF NODAL SOLUTION PER NODE
***x* POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1
,FREQ= 0.47280E-06 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX Uy UZ ROTX ROTY ROTZ

-

By



236  Vibration Simulation Using MATLAB and ANSYS

1 0.0000  0.0000 0.57735
2 0.0000  0.0000 0.57735

3 0.0000  0.0000 0.57735

MAXIMUM ABSOLUTE VALUES
NODE 0 0 I 0 0 0

VALUE 0.0000 0.0000 0.57735 0.0000 0.0000 0.0000

*ENDDO INDEX=1

*++3% POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 2
FREQ= 0.15915 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX Uy Uz ROTX ROTY ROTZ
1 0.0000  0.0000 -0.70711
2 0.0000  0.0000 0.75552E-14
3 0.0000  0.0000 0.70711

MAXIMUM ABSOLUTE VALUES
NODE 0 0 3 0 0 0
VALUE 0.0000 0.0000 0.70711 0.0000  0.0000 0.0000

**xx* POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 3
FREQ= 0.27566 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX Uy vz ROTX ROTY ROTZ
1 0.0000 0.0000 -0.40825
2 0.0000 0.0000 0.81650
3 0.0000  0.0000 -0.40825

MAXIMUM ABSOLUTE VALUES
NODE 0 0 2 0 0 0

VALUE 0.0000 0.0000 0.81650 0.0000 0.0000 0.0000

The ANSYS calculated eigenvectors, the three “UZ” listings highlighted in
bold type above, arranged in the modal matrix:

0.57735 -0.707 -0.40825
ANSYS z, =|0.57735 0 0.81649 (8.68)

0.57735 0.707 -0.40825



Chapter 8 Frequency Response: Modal Form 237

The hand-calculated modal matrix is below, only differing from the ANSYS
calculated values in the arbitrary “—1" multiplier for the second and third
modes:

0.57735 0.707  0.40825
=|0.57735 0 —-0.81649
0.57735 -0.707 0.40825

o &l-
Sl- 516 &=

2
- &l -
S

(8.69)

Problems
Note: All the problems refer to the two dof system shown in Figure P2.2.

P8.1 Using the eigenvalues and eigenvectors normalized with respect to mass
from P7.2 and forces F, and F, applied to mass 1 and mass 2, respectively,

write the equations in motion and physical and principal coordinates in matrix
form. Identify the components of the forcing function vector in principal
coordinates — which eigenvector components and which force, F orF,, are

involved.

P8.2 Solve for the four transfer functions for the system of P8.1 and write
them in transfer function matrix form. Separate each transfer function in
principal coordinates to show z_ /F and z,/F, asin (8.16).

P8.3 Back transform the transfer functions in principal coordinates to physical
coordinates. Identify the contributions to the transfer function from mode 1
and from mode 2 for all transfer functions.

P8.4 Take the transfer function results of P22 with m, =m, =m=1,
k, =k, =k =1 and zero damping and perform a partial fraction expansion on

each transfer function. Show that the results are identical to P8.3, the modal
form.

P8.5 What is the relationship between F andF, in order to excite mode 1
only? To excite only mode 2?



238  Vibration Simulation Using MATLAB and ANSYS

P8.6 Plot by hand the individual mode contributions to the z,/F, frequency

response for zero damping. Note the sign of the dc gain portion of each
contribution and add the two contributions appropriately to obtain the overall
frequency response. Extra Credit: Plot all three unique frequency responses,
showing the individual mode contributions.

P8.7 (MATLAB) Modify tdof modal_xfer.m for the undamped two dof
system with m;, =m, =m=1, k, =k, =k =1 and plot the overlaid frequency
responses.

P8.8 (ANSYS) Modify the threedof.inp code for the two dof system. Run
the code and plot the frequency responses for both masses for F =LF, =0.

Print out the eigenvalue and eigenvector results. Pick out the appropriate
entries of the eigenvector output and write out the modal matrix that ANSYS
calculates. Compare it with the modal matrix from P7.1 and identify any
differences.



CHAPTER 9

TRANSIENT RESPONSE: MODAL FORM
9.1 Introduction

The transient response example shown in Figure 9.1 will be solved by hand,
using the modal analysis method derivation from Chapter 7. As in the
frequency response analysis in the previous chapter, we will again start with
the eigenvalues and eigenvectors from Chapter 7. We will use them to
transform initial conditions and forces to principal coordinates and write the
equations of motion in principal coordinates. Laplace transforms will be used
to solve for the motions in principal coordinates and we will then back
transform to physical coordinates. Once again, the individual mode
contributions to the overall transient response of each of the masses will be
evident. The closed form solution is then coded in MATLAB and the results
plotted, highlighting the individual mode contributions.

9.2 Review of Previous Results

The applied step forces are as shown in Figure 9.1 and the initial conditions of
position and velocity for each of the three masses are shown in Table 9.1.

From previous results, (7.86) to (7.88), we know the eigenvalues and
eigenvectors normalized with respect to mass, z,:

0)1=0, (02=\/£
m

o1 1]
V2
0

o, =X 9.1)
m

-

e,
ad

9.2)

El
- Sl -
Si- 5l 5-

Sl L



240 Vibration Simulation Using MATLAB and ANSYS

Figure 9.1: Step forces applied to tdof system.

Mass 1 Mass 2 Mass 3
2, =0 Zy, =—1 z,; =1
z, =-1 Zy =2 Z,,=-2

Table 9.1: Initial conditions applied to tdof system.

By inspection, the mass and stiffness matrices in principal coordinates can be
written as:

00

1 0 9.3)
0 3

9.3 Transforming Initial Conditions and Forces

9.3.1 Transforming Initial Conditions

The initial condition vectors are transformed to principal coordinates by:

Pl 9.4)

The inverse of z,, found using a symbolic algebra program:



Chapter 9 Transient Response: Modal Analysis 241
REREERREN
3 3 3
z.'=Jm {% 0 # (9.5)
Yo o 6
6 3 6 |
REREERN ]
33 3 1rp 0
z,=2]'z, =Jm 12—2— 0 % -1 =\/5% (9.6)
1
Yo Vo 6 N3
K 3 6 | L 2
5B B [-A
3 3 3 1 3
z,=z'z, =Jm V2 0 -2 2 |=vm V2 ©.7)
2 2 5 2
G~ G 46
6 3 6 | | 6
9.3.2 Transforming Forces
The force vector in principal coordinates is:
(11 1] =
N 3
1|1 -1 1 |3v2
F=z2F=—0|—= 0 —|| 0|=—|—"> 9.8)
Jm | V2 V2 Jm | 2
-2
12 6
Vo V6 e 6 |

9.4 Complete Equations of Motion in Principal Coordinates

Now the equations in principal coordinates can be written in matrix form:



242  Vibration Simulation Using MATLAB and ANSYS

N5

3
1 0 0|z 0 0 0f|z
Sk "2 1
01 O|Z,|+|—||0 1 0Of]z, — | —= 9.9
S \m i 2 |Vm
0 0 1|z, 0 0 3]z, N
L 6 ]
With initial conditions:
— - r _\/5 7
0 3
2= | 22| 5 —dm| 2 ©.10)
2 2
& 148
L 2 J 6 |
Summarizing the equations in tabular form:
Equations of Motion, Displacement Initial Velocity Initial
Principal Coordinates | Conditions: Principal | Conditions: Principal
Coordinates Coordinates
2 _—\/5 Zplo=0 z - 3m
pl 3 \/E plo 3
.. k 32 —J/2m \2m
Z,+ - zZ,= Z 50 = =

” dm

. (3k]
Z,+|— |z
m

_ Ve
P3—6\/5

_—7\J6m

Zp3o 6

Table 9.2: Equations of motion and initial conditions in principal coordinates.



Chapter 9  Transient Response: Modal Analysis 243

9.5 Selving Equations of Metion Using Laplace Transform

We will now take the Laplace transform of each equation and solve for the
transient response resulting from a combination of the forcing function and the
initial conditions.

Note that taking the Laplace transform of first and second order differential
equations (DE) with initial conditions is (Appendix 2):

First Order DE: L{x(t)} = sX(s) — x(0) (9.11)
Second Order DE: Z{x (1)} = s*X(s) - sx(0) — x(0) (9.12)
Solving for z,, using Laplace transforms:

_B
pl_S\/;n'

(9.13)

s’z,,(s)-s2,,(0)~ ,,(0) = =B (9.14)

53\/5

3 | s3dm

szzpl(s)-s(0)—[ (9.15)‘

—3 3m

§'2,(8) = ——=——— 9.16)

sS\/B 3

)= —~3  3m
pl 33\/“ 352

1 _¥m
$V3m 3§’

-1 _~N3m
$3m 3§’

(9.17)

Back-transforming to time domain, noting that:



244  Vibration Simulation Using MATLAB and ANSYS

n ! 2 2!
' >—7 or t° = o)
—t2
t)=—— Forced Response
" 2 3m
+0 Initial Displacement
——“‘;mt (nitial Velocity) x (Time)

Substitutingm=1,k=1:

Lt Bt
pl 2 \/g 3
Solving for z,, using Laplace transforms:
W2

. (k
it —|z,=—+~
»? (m] N ™

2 B k 32
§°2,,(8)~sz,,(0) z]{,2(0)+(m]zp2(s)—2\/m_s

2

szzpz(s)—s[‘f—rﬁ] Y2m [ Jpz()-3TfS

SR A T

W2 S[@] Jim
2Jm 2 2

zpz(s) = - + ,
s[sz+£] KL
m m m

2 _
W, =—

Back-transforming to the time domain:

(9.18)

(9.19)

(9.20)

(9.21)

(9.22)

| (9.23)

(9.24)

(9.25)



Chapter 9  Transient Response: Modal Analysis 245

zZ,,(t) =2i:/£___r2;{—0—iz—(l—cos mzt]]—@[%z}sin(mzt+90°)

2

cos(t)  (9.26)

vN2m 1 .
+———sin(o,t)
('02
Substitutingm=k=1, o, =1:
z,,(t) = ﬂ - i\/—Ecos(t) - ﬁcos(t) + ﬂsin(t) 9.27)
2 2 . 2 2
Solving for z , using Laplace transforms:
—J6
7tz =—— (9.28)
n O
. /6
§72,,(8) —52,5(0) — 2, (0) + ]z, (s) = P~ (9.29)
§'z,,(8)+ 017 ,(s) -8 bm | _f Z7Vom |_ Vo (9.30)
2 J6 6sv/m
2,()(s* +a? )= V6 4 Svém _ 7v6m (9.31)
6svm 2 J6
z,(s)= —J6 1 +\/6m s ___TVém 932)
P evm|s(sTrel) | 2 |(sT+ed)| VE(sP+ai) '
Back-transforming to the time domain:
-J6[ 1
Z,(t)=——=| —(l—-cosm,t
p3( ) 6\/5 (Dg ( 3 )
+ﬂ[&}in(a)3t+90")—misinmst
2 lo, )2 "0 6

cos (m;t)
(9.33)



246 Vibration Simulation Using MATLAB and ANSYS

Substituting m=k =1, 2=%»

w(tﬁ ‘F f (ft)+f cos(3) - ]-‘Jf—s n(30)
={g[%l+§cos(\/§t)+3cos(\/§t)—%sin(\/§t)} (9.34)

o B0 BBEEE g 6 B

Now that the displacements in principal coordinates are available, they can be
plotted to see the motions of each individual mode of vibration.

Displacements in principal coordinates can be back-transformed to physical

coordinates:

- &l -
ol

> &~

| 18

2=1,2, 935)
2 3t |
23 3 o
i—i ost—ﬁcost+£smt (9.36)
2 2 2
\/—+£COS\/_t+£COS\/_t—_Sln\/_t
J_ -
1] - Bt ]
7 23 3
) W2 32 2 2
— — ———cost———cost+—sint
J6 2 2 2
1| V6 6 J6 7 .
— —+—cos\/§t+—cos\/§t——smx/§t
Jo | 18 18 2 V3 |

9.37)



Chapter 9  Transient Response: Modal Analysis 247

Rewriting the equations to highlight the contributions to the total motion in
physical coordinates of each mode:

Z Zyy Zaz Zugs Zy
Z=\Z2 |F | Zon Zon Zym | | Zp2 (9.38)
Z3 Zii Zpny Zpn Zy
Zy S L Zy 2,025 Y252, Mode contributions to total z, motion
N —

e —
Istmode 2nd mode 3rdmode

2, =202, + 2,7 4 2,37 Mode contributions to total z, motion

Istmode 2ndmode 3rdmode
Zy =2y Zy F ZyZyy H 2,337, Mode contributions to total z, motion
—

—
Istmode 2ndmode 3rdmode
(9.39a,b,c)

Because the first mode motion for each degree of freedom is rigid body, and
its displacement eventually goes to infinity, it masks the vibration motion of
the second and third modes for long time period simulations. If the first mode
(rigid body) motion is subtracted from the total motion of z;, z,, and z;, the
motion due to the vibration can be seen, as shown in Figure 9.8.

9.6 MATLAB code tdof_modal_time.m — Time Domain Displacements in
Physical/Principal Coordinates

9.6.1 Code Description

The MATLAB code tdof_modal_time.m is used to plot the displacements
versus time in principal coordinates using (9.19), (9.27) and (9.34) with
m=k=1. Displacements in physical coordinates are obtained by
premultiplying principal displacements by the modal matrix.



248  Vibration Simulation Using MATLAB and ANSY'S

9.6.2 Code Results

Displacements in Principal Coordinate System

Displacements

Time, sec

Figure 9.2: Displacements in principal coordinates, motion of the three modes of vibration.

The initial conditions in principal coordinates were 0, —0.707 and 1.225 for

z,, Z,, and z 5, respectively, which match the results shown in Figure 9.3.

Displacements in Principal Coordinate System

T T T T T T T
|

Displacements

Time, sec

Figure 9.3: Displacements in principal coordinates, expanded vertical scale to check initial
conditions.



249

Transient Response: Modal Analysis

Chapter 9

Plotting the displacements in physical coordinates, where the initial

displacement conditions in physical coordinates were 0, —1 and 1 for

z,, Z, and z; , respectively.

Displacements in Physical Coordinate System

5
Time, sec

4

Displacement in physical coordinates.

Figure 9.4

Displacement of dof 1 for Modes 1, 2 and 3

sjuswaoe|dsiq

10

9

5
Time, sec

4

Figure 9.5: Displacements of mass 1 for all three modes of vibration.



250 Vibration Simulation Using MATLAB and ANSYS

Displacement of dof 2 for Modes 1, 2 and 3

spawadeidsiq

Time, sec

isplacements of mass 2 for all three modes of vibration.

D

Figure 9.6

Displacement of dof 3 for Modes 1, 2 and 3

sjueweoedsiq

Time, sec

isplacements of mass 3 for all three modes of vibration.

D

Figure 9.7



Chapter 9 Transient Response: Modal Analysis 251

Vibration Displacements

Figure 9.8: Displacements in physical coordinates, with the rigid body motion removed to
show more clearly the oscillatory motion of the three masses.

9.6.3 Code Listing

% tdof modal_time.m hand solution of modal equations
clf;
clear all;

% define time vector for plotting responses :

t = linspace(0,10,50);
% solve for and plot the modal displacements
zpl = (-t 2/(2*sqrt(3))) - sqrt(3)*t/3;
zp2 = 3*sqrt(2)/2 - (3*sqrt(2)/2)*cos(t) - (sqrt(2)/2)*cos(t) + (sqrt(2)/2)*sin(t);

zp3 = (sqri(6)/6)*((~1/3) + (1/3)*cos(sqrt(3)*t) + I*cos(sqrt(3)*t) - ...
(7/sqrt(3))*sin(sqrt(3)*t));

plot(t,zp1,'’k+-',t,zp2,'kx-"t,zp3,'’k-)
title('Displacements in Principal Coordinate System')
xlabel('Time, sec')

ylabel('Displacements')

legend('zpl','zp2','zp3',3)

grid

disp(‘execution paused to display figure, "enter" to continue'); pause




252 Vibration Simulation Using MATLAB and ANSYS

axis([0 1 -2 2])
disp(‘execution paused to display figure, "enter" to continue'); pause
% define the normalized modal matrix, m = 1
zn = [1/sqrt(3) 1/sqrt(2) 1/sqrt(6)
1/sqrt(3) 0 -2/sqrt(6)
1/sqrt(3) -1/sqrt(2) 1/sqri(6)];

% define the principal displacement matrix, column vectors of principal displacements
% at each time step

zp = [zp1; zp2; zp3];
% multiply zn times zp to get z
Z=1m*zp;
zl =z(1,);
72 =17(2,);
23 =123,
plot(t,z1,'%k+-"t,22,'kx-",t,23,'k-")
title('Displacements in Physical Coordinate System')
xlabel('Time, sec')
ylabel('Displacements')
legend('zl','22','23',3)
grid
disp(‘execution paused to display figure, "enter" to continue'); pause

% define the motion of each each dof for each mode, zij below refers to the
% motion of dof "i" due to mode "j"

z11 =zn(1,1)*zpl;
z12 = zn(1,2)*zp2;
z13 = zn(1,3)*zp3;
z21 =zn(2,1)*zpl;
722 = m(2,2)*zp2;
723 = zn(2,3)*zp3;
z31 =zn(3,1)*zpl;
232 = zn(3,2)*zp2;
733 = zn(3,3)*zp3;

plot(t,z11,’k+-',t,z12,'kx-',t,z13,'’k-")
title('Displacement of dof 1 for Modes 1, 2 and 3}




Chapter 9  Transient Response: Modal Analysis 253

%
%

xlabel('Time, sec')
ylabel('Displacements')
legend('Mode 1','Mode 2','Mode 3',3)
grid

. disp(‘execution paused to display figure, "enter" to continue'); pause

plot(t,z21,'k+-',£,222 'kx-',t,223,'’k-")
title('Displacement of dof 2 for Modes 1, 2 and 3")
xlabel('Time, sec')

ylabel('Displacements')

legend('Mode 1','Mode 2','Mode 3',3)

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

plot(t,z31,'k+-",t,232,'kx-"t,233.'k-")

title('Displacement of dof 3 for Modes 1, 2 and 3')

xlabel('Time, sec')

ylabel('Displacements’)

legend('Mode 1',/Mode 2',Mode 3',3)

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

define the motion of each each dof with the rigid body motion for that
mode subtracted

zlvib =z1 - z11;
z2vib =22 - 721;
z3vib = 23 - 231;

plot(t,z1vib,'k+-',t,z2vib,'kx-',t,zZ3vib,'k-")

title('Displacements of dof 1, 2 and 3 with Rigid Body Removed')
xlabel('Time, sec")

ylabel('Vibration Displacements')

legend('dof 1','dof 2','dof 3',3)

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

tplot =t;

plot(tplot,z1,'k+-'t,22 'kx-'t,73,'’k-")

title('Displacements of dof 1, 2 and 3")

xlabel('Time, sec')

ylabel('Vibration Displacements'’)

legend('dof 1','dof 2','dof 3',3)

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

save tdof_modal time z1z2z3 tplot z1 z2 z3




254  Vibration Simulation Using MATLAB and ANSYS

Problems
Note: All the problems refer to the two dof system shown in Figure P2.2.

P9.1 Using the equations, initial conditions and forcing functions from P7.4,
solve for the closed form time domain response in principal coordinates using
Laplace transforms. Back transform to physical coordinates and identify the
components of the response associated with each mode.

P9.2 (MATLAB) Modify the tdof modal time.m code for the two dof
system and solve for the time domain responses in both principal and physical
coordinates using the equations, initial conditions and forcing functions from
P7.4.



CHAPTER 10

MODAL ANALYSIS: STATE SPACE FORM
10.1 Introduction

In Chapters 5, 6 and 7 we developed the state space (first order differential
equation) form of the equations of motion and used them to solve for the
eigenvalues and eigenvectors (with real or complex modes) and frequency and
transient responses. The state space methodology presented so far was
independent of the amount of damping in the system, hence the possibility of
complex modes.

In Chapters 8 and 9 we developed the modal analysis method using the second
order differential equation form. If the amount of damping in the system is
low, we can make the approximation that normal modes exist and solve for the
undamped (real) modes of the system. Proportional damping can then be
added to the equations of motion in principal coordinates while keeping the
equations uncoupled.

In the next three chapters we will combine the state space techniques in
Chapters 5, 6 and 7 with the modal analysis techniques in Chapters 8 and 9.
In real world situations, finite element models are used to describe dynamic
systems. The finite element program is used to solve for eigenvalues and
eigenvectors, which are then used to create a state space model in MATLAB.
However, one may have the need to solve for eigenvalues and eigenvectors in
state space form for a model that is not created using finite elements. For this
reason, the chapter will start out with a closed form solution to the tdof
eigenvalue problem in state space form. The eigenvalues and eigenvectors
which result from the state space eigenvalue problem will contain the same
information as in the second order eigenvalue problem, but will be in a
different form. The differences will be highlighted and discussed.

We then will use the eigenvalues to form the uncoupled homogeneous
equations of motion in the state space principal coordinate system by
inspection. Forcing function and initial conditions will then be converted to
principal coordinates using the normalized modal matrix, creating the final
state equations of motion in the principal coordinate system. As in the second
order form, proportional damping can be added to the modal formulation and
the solution in principal coordinates back-transformed to physical coordinates
for the final result. We will use a method of formulating the input matrix B
such that the transformation of forces to principal coordinates and conversion
to state space form can happen in one step instead of two. A similar



256  Vibration Simulation Using MATLAB and ANSY'S

formulation will be developed for the output matrix C, where we will define
the output vector and convert back to physical coordinates in one step. The
method described here can be used for both transient and frequency response
solutions.

One might ask why we are going to all the trouble of doing a state space
version of modal analysis. Chapter 5 showed that given the state space
equations of motion of a system, we can use MATLAB to solve for both
frequency and time domain responses without knowing anything about
eigenvalues and eigenvectors. The reason we are going to this trouble is that
most mechanical simulations are performed using finite element techniques,
where the equations of motion are too numerous to be able to be used directly
in MATLAB or in a servo system simulation. Since modal analysis results,
the eigenvalues and eigenvectors, are available from an ANSYS eigenvalue
solution, it would be nice if we knew how to use these results by developing
them into a MATLAB state space model. We could then use the power of
MATLAB to perform any further analysis.

The techniques described above can be further extended by taking the results
set from a large finite element probiem and defining a small state space model
that accurately describes the pertinent dynamics of the system (Chapters 15 to
19). The small MATLAB state space model can then be used in lieu of the
frequency and transient analysis capabilities in the finite element program.
The MATLAB state space model can also be combined with a servo system
model, allowing complete servo-mechanical system simulations.

10.2 Eigenvalue Problem

We start with the undamped homogeneous equations of motion in state space
form:

X=Ax 10.1)
In Chapter 7 we defined a normal mode as:
X; =X, sin(@t+0,) = x,, Im(e’*"**) (10.2)

For our three degree of freedom ( z, toz, ), six state (X, tox,) system, for the

i® eigenvalue and eigenvector, the equation would appear as:



Chapter 10  Modal Analysis: State Space Form 257

Zy Xy Xt

z Xoi Xmai

Z, Xy X .

z: = x: =X, sin(@t+¢,) = x:: sin(ot+¢;)  (10.3)
Zy; X5 Xnsi

[ Zy | [ Xei | Xméi |

Differentiating the modal displacement equation above to get the modal
velocity equation:

%[xmi Sil’l((l)lt +¢i ):, = X %Im[e“"*”"i)]
=X, Im[jmlej(«xtwi):l

x,; Im[jo, (cos(@,t + ;) + jsin(w t +,))] (10.4)

x,; Im[ jo.cos(o;t +¢,) — @ sin(at+¢,)]

X, mcos(wt+9,)

Substituting the derivatives into the state equation we arrive at the eigenvalue
problem:

X = Ax
jo.x_ sin(mt+¢.) = Ax_ sin(mt+ ¢,
J 1Xml Sln( l' ¢l ) Xml SIn( 1 q)l ) (10'5)
Jox ;= Ax

(jolI-A)x . =0
10.3 Eigenvalue Problem ~ Laplace Transform

We can also use Laplace transforms to define the eigenvalue problem. Taking
the matrix Laplace transform of the homogeneous state equation and solving
for x(s):

sIx(s) = Ax(s)

(sI — A)x(s) =0 (10.6a,b)

This is another form of the eigenvalue problem, again where the determinant
of the term (sI — A) has to equal zero to have anything other than a trivial

solution.



258 Vibration Simulation Using MATLAB and ANSYS

|(sT — A)|=0 (10.7)

Letting m, =m, =m, =m, k, =k, =k, ¢, =c, =0 and rewriting the matrix
equations of motion to match the original undamped problem used in (6.8).

s -1 0 0 0 O

5 S _—k 0O 0 0

m m

0 0 s -1 0 O
sI-A)=| — — 10.8
GI-A)=|k % & (10.8)

m m m

o 0 0 0 s -1

0 0 _—k 0 E s

I m m

In Section 6.3 we used this form of the equation to find the state space transfer
function matrix, where we needed the inverse of (sI—A). Here we need the

determinant of (sI—A). Using a symbolic algebra program results in the
following characteristic equation:

s?(m’s* +4m?ks® +3mk?*) = 0
(10.9a,b)
m’s® +4m’ks* +3mk2s’ =0

This is the same equation we found in (2.58) for the characteristic equation,
whose roots were found to be the poles (eigenvalues). Repeating from
Chapter 2, (2.67), (2.70) and (2.71):

$,,=0
.1k .
$34 7 il\/g =1jl
S5.6 =ij,/% =1j1.732 (10.10a,b,c)

In Chapter 5, the state space chapter, we showed that for arbitrary damping the
eigenvalues would be complex numbers with both real and imaginary
components, where the real part was indicative of there being damping in the
system as the poles were offset to the left of the imaginary axis (Figure 5.3).



Chapter 10 Modal Analysis: State Space Form

We defined the damped eigenvalues as (A, ,, = 0,1 jo,, ) (5.48). Note for

the undamped eigenvalues above, the ¢ values are zero, with all poles lying

on the imaginary axis.

10.4 Eigenvalue Problem — Eigenvectors

Let us now solve for the eigenvectors in state space form, going back to the

original equations of motion for the i mode, similar to (10.5):

[jo, -1t 0 0 0 0]
L3 jo, =« 0 0 O ||%mi
m m -
m2i
0 0 jo, -1 0 0 X
m3i
—k 2k . - =0
— 0 — o =X 0 || Xmai
m m m
0 0 0 0 jo -1[%s
_ | Xm6i |
0 o0 = 0 L3 Jjo,
L m m _
Expanding the equations:
JOX = Xpy =0
k . k
— K TIOX g —— Xy = 0
m m
jmixm3\ _xm4i = 0
k 2k
T Xy T Xy TIOX X T
m m
jmimeI Xm6i = 0
k k . ‘
Xyt X HjO X, =0
m m

(T30 ]

Dropping the “m” and

€629
1

terms from the eigenvectors:



260 Vibration Simulation Using MATLAB and ANSYS

jox, -x,=0
k . k
— X, tjOx,——X, =0
m m
jox,-x, =0
k 2k k (10.13a-f)

-——X, +—X,; +jox,——x, =0
m m m

Selecting the first state, x,, as a reference and solving for x, through x, in

terms of x, .
Solving for x, from (10.13a):

jox,—x, =0

X, = jOX, (10.14)
X2 = j(‘oi
Xy

Solving for x, from (10.13b):

k . k
—X, +jox,——x;, =0
m m

.. k

Jo,(jox,) ——X%; = ——Xx,

—ix3 =—£x,+0)izx1 (10.15)
m m

Solving for x, from (10.13c):



Chapter 10 Modal Analysis: State Space Form

261

jox,—-x, =0

k—o’
jo){ w‘m]xl—x,, =0

Solving for x; from (10.13d):

m

k Zk{k—mfmJ
-——X, +— X,
m m k

. [ [k—a)izmﬂ k
+j, | jo, X, ——Xx; =0
k m

_( m’e —3mke} +k*
X5 = . X,
k
X; _ m’e —3mko +k°
X, K

k 2k . k
-—X +t—X; +]JOX, ——X;, =0
m m

Solving for x, from (10.13e):

Jox,—x, =0

. [ m'e —3mka’ +k’ .
Xe = JO, e X; = JWX;
Xs . [msz - 3mkay’ +k2J . X
- = ('oi 2 = .] i
k

X Xy

(10.16)

(10.17)

(10.18)

Note that the results for the displacement eigenvector components in (10.15)
and (10.17) match the two displacement eigenvectors calculated in (7.24) and
(7.29), respectively. Also note that all three velocity eigenvector components
are equal to jo, times their respective displacement eigenvector components.



262  Vibration Simulation Using MATLAB and ANSYS

Unlike the complex eigenvectors found in Chapter 5 for the damped model,
these undamped eigenvector displacement states are all real; they have no
complex terms.

10.5 Modal Matrix

We will see that when we transform to principal coordinates, create the state
equations in principal coordinates and back transform results to physical
coordinates we only require a 3x3 displacement modal matrix. This is because
we can transform positions and velocities separately. The modal matrix (7.46)
and normalized modal matrix (7.77) are repeated below, again for m=k =1:

11 1
z,=|1 0 -2 ' (10.19)
1 -1 1 ‘

0.5774 —0.707 0.4082
=105774 0  -0.8165| (10.20)
0.5774 0.707  0.4082

10.6 MATLAB Code tdofss_eig.m: Solving for Eigenvalues and
Eigenvectors

10.6.1 Code Description
The MATLAB code tdofss_eig.m solves for the eigenvalues and eigenvectors
in the state space form of the system. The code will be listed in sections with

commented results and explanations following each section.

10.6.2 Eigenvalue Calculation

% tdofss_eig.m eigenvalue problem solution for tdof undamped model
clear all;
% define the values of masses, springs, dampers and forces

ml=1;
m2=1;




Chapter 10 Modal Analysis: State Space Form 263

m3=1;

cl=0;
c2=0;

kl=1;
k2=1;

% define the system matrix, a

a=[0 1 0 0 0 0
-kl/ml  -cl/ml ki/ml cl/ml 0 0
0 0 0 1 0 0
k1/m2 cl/m2  -(kl1+k2)/m2 -(cl+c2)/m2 k2/m2 c2/m2
0 0 0 0 0 1
0 0 k2/m3 c2/m3 -k2/m3 -c2/m3];

% solve for the eigenvalues of the system matrix

[xm,omega] = eig(a)

The resulting eigenvalues, in units of rad/sec, are below. Note that MATLAB
uses “1” for imaginary numbers instead of *j” which is used in the text.

omega =
Columns 1 through 4
0+1.7321i
-1.7321i

+ 1.0000i

SOoOooCc oo
DSooCOCO
SoOCOoCO

Columns § through 6

- 1.0000i

cooocoOof-ococoCcOoC

oo OoCoCC

The eigenvalues, what MATLAB calls “generalized eigenvalues,” are the
diagonal elements of the omega matrix. The six values that MATLAB
calculates are: 1.7321i, -1.732i, 0, 1.0000i, —1.0000i, O, in that order.
These are the same values we found using our closed form calculations. Also,
the values are all imaginary, as we would expect with a system with no

damping and as we found above from our |(sI - A)| =0 derivation.




264  Vibration Simulation Using MATLAB and ANSYS

10.6.3 Eigenvector Calculation

The resulting eigenvectors, directly from MATLAB output are:

xm =
Columns 1 through 4
0.2041 0.2041 0.5774 0+ 0.5000i
0+ 0.35361 0-0.35361 0 -0.5000
-0.4082 -0.4082 0.5774 0+ 0.0000i
0-0.70711 0+0.7071i 0 0.0000
0.2041 0.2041 0.5774 0 - 0.5000i
0+ 0.35361 0-0.3536i 0 0.5000

Columns 5 through 6
0 - 0.50001 -0.5774

-0.5000 0.0000
0 - 0.0000i -0.5774
0.0000 0.0000
0+0.50001 -0.5774
0.5000 0.0000

Note that unlike the eigenvectors calculated in the Modal Analysis section,
which had three rows, these eigenvectors each have six rows, each row

corresponding to its respective state. Repeating the state definitions from
(5.4) t0 (5.9):

X, =z, Position of Mass 1
X, =z, Velocity of Mass 1
X, = z, Position of Mass 2
X, =z, Velocity of Mass 2
X, =z, Position of Mass 3
X, =z, Velocity of Mass 3

Thus, the first, third and fifth rows represent the positions of the three masses
for each mode, and the second, fourth and sixth rows represent the velocities

of the three masses for each mode. Separating into position and velocity
components:

xm(position) =

0.2041 0.2041 0.5774 0+ 0.50001 0 - 0.5000i -0.5774
-0.4082 -0.4082 0.5774 0 + 0.0000i 0 - 0.0000i -0.5774
0.2041 0.2041 0.5774 0 - 0.5000i 0+0.5000i -0.5774

xm(velocity) = :

0 +0.3536i 0-0.3536i 0 -0.5000 -0.5000 0.0000
0-0.7071i 0-+0.7071i 0.0000 0.0000 0.0000
0+0.3536i 0-0.35361 0 0.5000 0.5000 0.0000

<




Chapter 10 Modal Analysis: State Space Form 265

What is the relationship between the position and velocity terms in each of the
eigenvectors? Once again, knowing that at each undamped frequency a
normal mode exists and that the position and velocity can be defined as:

z, = zniemt
(10.21a,b)
z, = j(‘)izniejmil
Taking the amplitudes of the position and velocity:
| 2,|=0| z, (10.22)

The amplitude of the velocity eigenvector terms should be equal to the
eigenvalue times its respective position eigenvector term. The fact that the
velocity entries are complex numbers by virtue of multiplying the “real”
position eigenvector entries by the eigenvalue does not make the eigenvectors
“complex,” but refers to the fact that in the undamped case velocity is 90" out
of phase with position.

Checking the first eigenvector by multiplying the position term (state 1) by the
eigenvalue to get the velocity term (state 2): (highlighted in bold type above)

0.2041 * 1.7321j = .3535j (10.23)

Note that for the third and sixth eigenvectors, which have zero eigenvalues,
the velocity entries are zero because the position entry is multiplied by zero.

10.6.4 MATLAB Eigenvectors — Real and Imaginary Values

It is interesting to see how MATLAB handles real and imaginary values in its
eigenvectors.

Xm =
0.2041 0.2041 0.5774 0+ 0.5000i 0 - 0.5000i -0.5774
0+ 0.3536i 0-0.35361 0 -0.5000 -0.5000 0.0000
-0.4082 -0.4082 0.5774 0+ 0.0000i 0 - 0.0000i -0.5774
0-0.70711 0+0.70711 0 0.0000 0.0000 0.0000
0.2041 0.2041 0.5774 0 - 0.50001 0+0.50000 -0.5774
0+ 0.3536i 0-0.3536i 0 0.5000 0.5000 0.0000

We know that the position and velocity entries are related by “” times the
eigenvalue, but why are some position eigenvector entries real and some
imaginary? For example, the position eigenvector entries for all except the




266  Vibration Simulation Using MATLAB and ANSYS

mode at 1 rad/sec (the fourth and fifth columns), are real, while the fourth and
fifth column position entries are imaginary. From the original normal modes
analysis, we know that only the ratios of eigenvector entries are important,
and that the eigenvectors can be normalized in several fashions. Therefore,
each eigenvector can be multiplied by an arbitrary constant. The fourth and
fifth eigenvectors can be multiplied by “i” to make their position entries real
for consistency with the hand-calculated results.

10.6.5 Sorting Eigenvalues / Eigenvectors

Typically some housekeeping is done on the eigenvalues and eigenvectors
before continuing, sorting the eigenvalues from small to large (done by default
in ANSYS), rearranging the eigenvectors accordingly and checking for
eigenvectors with imaginary position entries and converting them to real by
multiplying by “i.” Also, the signs of the real portion of state 1 are set
positive to ensure that sets of eigenvectors are complex conjugates of each
other for consistency.

Continuing the listing of tdofss_eig.m, showing the sorting code:

| % take the diagonal elements of the generalized eigenvalue matrix omega
omegad = diag(omega);
% in real problems, we would next convert to hz from radians/sec
omegahz = omegad/(2*pi);
% now reorder the eigenvalues and eigenvectors from low to high frequency,
% keeping track of how the eigenvalues are ordered to reorder the
% eigenvectors to match, using indexhz
[omegaorder,indexhz] = sort(abs(imag(omegad)))
for cnt = 1:length(omegad)
omegao(cnt, 1) = omegad(indexhz(cnt)); % reorder eigenvalues
xmo(:,cnt) = xm(:,indexhz(ent)); % reorder eigenvector columns
end
omegao
Xmo
% check for any eigenvectofs With imaginary posiﬁoﬁ elehlenfs by chééking

% the first three position entries for each eigenvector (first, third and
% and fifth rows) and convert to real




Chapter 10  Modal Analysis: State Space Form

267

for cnt = l:length(omegad)
if (real(xmo(l,cnt)) & real(xmo(3,cnt)) & real(xmo(5,cnt))) ==0
xmo(:,cnt) = i*(xmo(:,cnt)); % convert whole column if imaginary
else
end
end
Xmo
% check for any eigenvectors with negative position elements for the first
% displacement, if so change to positive to that eigenvectors for the same mode
% are complex conjugates
for cnt = 1:length(omegad)
if real(xmo(l,cnt)) <0
xmo(:,cnt) = -1*(xmo(:,cnt)); % convert whole column if negative
else
end

end

Xmo

Printing the results of the MATLAB reordering:




268  Vibration Simulation Using MATLAB and ANSYS

omegaorder =
0
0
1.0000 These are the re-ordered eigenvalues, from low to high.
1.0000
1.7321
1.7321
indexhz =

This is the ordering of the original eigenvalues.

N = th AW

omegao =
0
0
0 + 1.0000i
0 - 1.0000i
0+1.7321i
0-1.7321i

Here are the reordered eigenvectors.

Xmo =
Columns 1 through 4
0.5774 -0.5774 0+ 0.5000i 0 - 0.50001
0 0.0000 -0.5000 -0.5000
0.5774 -0.5774 0+ 0.0000i 0 - 0.0000i
0 . 0.0000 0.0000 0.0000
0.5774 -0.5774 0 - 0.5000i 0 + 0.5000i
0 0.0000 - 0.5000 . 0.5000
Columns 5 through 6
0.2041 0.2041
0+0.3536i 0-0.3536i
-0.4082 -0.4082
0-0.7071i 0+0.7071i
0.2041 0.2041

0+ 0.3536i 0-0.3536i

Here the converting of imaginary position values to real is performed, note
that the third and fourth eigenvectors are converted.




Chapter 10 Modal Analysis: State Space Form
Xmo =
Columns 1 through 4
0.5774 -0.5774 -0.5000 0.5000
0 0.0000 0 - 0.5000i 0 - 0.5000i
0.5774 -0.5774 0.0000 0.0000
0 0.0000 0 - 0.00001 0 - 0.0000i
0.5774 -0.5774 0.5000 -0.5000
0 0.0000 0+ 0.5000i 0 + 0.5000i
Columns 5 through 6
0.2041 0.2041
0+ 0.35361 0-0.35361
-0.4082 -0.4082
0-0.7071i 0+ 0.7071i
0.2041 0.2041
0+ 0.35361 0-0.3536i

In this step the first row elements are checked to see that they are positive; if
not, the column is multiplied by —1.

Xmo =

Columns 1 through 4

0.5774 0.5774 0.5000 0.5000

0 -0.0000 0+ 0.5000i 0 - 0.50001

0.5774 0.5774 0.0000 0.0000

0 ) -0.0000 0 + 0.0000i 0 - 0.0000i

0.5774 0.5774 -0.5000 -0.5000

0 -0.0000 0 - 0.50001 0 + 0.5000i
Columns S through 6

0.2041 0.2041

0+ 0.3536i 0-0.3536i

-0.4082 -0.4082

0-0.7071i 0+0.70711

0.2041 0.2041

0+ 0.3536i 0-0.3536i

10.6.6 Normalizing Eigenvectors

Now that the eigenvalues and eigenvectors are available, we can normalize the
eigenvectors with respect to mass. Then we will check the resulting
diagonalization by multiplying the original mass and stiffness matrices by the
normalized eigenvectors to see if the mass matrix becomes the identity matrix
and the stiffness matrix becomes a diagonal matrix with squares of the
eigenvalues on the diagonal (spectral matrix).




270 Vibration Simulation Using MATLAB and ANSYS

Since we need to deal only with the displacement entries of the 6x6 modal
matrix in order to transform the 3x3 mass and stiffness matrices, the x,

matrix below is a 3x3 matrix with only displacement entries.

Reviewing, the mass matrix is diagonalized by pre- and postmultiplying by the
normalized eigenvector matrix:

xmx, =1, (10.24)

yielding the identity matrix. The stiffness matrix is also diagonalized by pre-
and postmultiplying by the normalized eigenvector matrix:

x'kx, =k, (10.25)

yielding the stiffness matrix in principal coordinates, the spectral matrix, a
diagonal matrix with squares of the eigenvalues on the diagonal.

Repeating from Section 7.4.2, the normalized modal matrix x, is made up of
eigenvectors as defined below:

x = mi . Xmi : (10.26)

Where q; is defined as:

q = {Z X mji [Zn: M X ﬂz (1027)
j=i k=1

For a diagonal mass matrix, simplifying g because all the mjk terms are zero:

1
n 2
q = [kaxiﬂd} (10.28)
k=1

Continuing with code from tdofss_eig.m:

% define the mass and stiffness matrices for normalization of eigenvectors
% and for checking values in principal coordinates

m=[ml 0 O




Chapter 10 Modal Analysis: State Space Form

271

%
%

%
%

%

%

%

%

0 m2 0
0 0 m3];

k=[ kI &I 0
Xkl kl+k2 k2
0 X K

define the position eigenvectors by taking the first, third and fifth
rows of the original six rows in xmo

xmopl = [xmo(1,:); xmo(3,:); xmo(5,:)]

define the three eigenvectors for the three degrees of freedom by taking
the second, fourth and sixth columns

xmop = [xmop1(:,2) xmopl(:,4) xmopl(:,6)]
normalize with respect to mass
for mode =1:3
xn(:,mode) = xmop(:,mode)/sqrt(xmop(:,mode) *m*xmop(:,mode));
end
xn
calculate the normalized mass and stiffness matrices for checking
mm = xn"*m*xn
km= xn'*k*xn
check that the sqrt of diagonal elements of km are eigenvalues
p = (diag(km)).”0.5;
[p abs(imag(omegao(1:2:5,:)))]
rename the three eigenvalues for convenience in later calculations
w1 = abs(imag(omegao(1)));
w2 = abs(imag(omegao(3)));

w3 = abs(imag(omegao(5)));

Back to MATLAB output, with comments added in bold type:

Repeating xmo, the full, rearranged eigenvector matrix:

Xmo =

Columns | through 4




272  Vibration Simulation Using MATLAB and ANSYS

0.5774 0.5774 0.5000 0.5000

0 -0.0000 0 + 0.5000i 0 - 0.5000i

0.5774 0.5774 0.0000 0.0000

0 -0.0000 0+ 0.0000i 0 - 0.0000i

0.5774 0.5774 -0.5000 -0.5000

0 -0.0000 0 - 0.50001 0+ 0.5000i
Columns 5 through 6

0.2041 0.2041

0 +0.3536i 0-0.3536i

-0.4082 -0.4082

0-0.7071i 0+0.7071i

0.2041 0.2041

0+0.35361 0-0.3536i

Taking only the position rows:
xmopl =

0.5774 0.5774 0.5000 0.5000 0.2041 0.2041
0.5774 0.5774 0.0000 0.0000 -0.4082 -0.4082 .
0.5774 0.5774 -0.5000 -0.5000 0.2041 0.2041

Taking every other column to form the 3x3 position eigenvector matrix:
xmop =

0.5774 0.5000 0.2041
0.5774 0.0000 -0.4082
0.5774 -0.5000 0.2041

Normalizing with respect to mass:
xn=

0.5774 0.7071 0.4082
0.5774 0.0000 -0.8165
0.5774 -0.7071 0.4082

Checking the mass matrix in principal coordinates, should be the identity matrix:
mm =

1.0000 -0.0000 0.0000
-0.0000 1.0000 -0.0000
0.0000 -0.0000 1.0000

Checking the stiffness matrix in principal coordinates, should be squares of eigenvalues:
km =

0.0000 -0.0000 0.0000
-0.0000 1.0000 -0.0000
0.0000 -0.0000 3.0000

Comparing the square root of the diagonal elements of the stiffness matrix in principal
coordinates with the eigenvalues:
ans =




Chapter 10 Modal Analysis: State Space Form 273

0.0000 0
1.0000 1.0000
1.7321 1.7321

10.6.7 Writing Homogeneous Equations of Motion

Now that we know the eigenvalues, we can write the homogeneous equations
of motion in the principal coordinate system by inspection. We can also use
the normalized eigenvectors to transform the forcing function and initial
conditions to principal coordinates, yielding the complete solution for either
transient or frequency domain problems in principal coordinates. We can then
back-transform to the physical coordinate system to get the desired results in
physical coordinates. Through the modal formulation we can define the
contributions of various modes to the total response.

For a problem of this size, there is no need to use the modal formulation.
When solving real problems, however, whether they be large MATLAB based
problems or ANSYS finite element models, using the modal formulation has
advantages. As mentioned earlier, ANSYS gives the ecigenvalues and
eigenvectors normalized with respect to mass as normal output of an
eigenvalue run. Therefore, all one has to do to solve in MATLAB is to take
that ANSYS output information and build the equations of motion in state
space form and solve, taking advantage of the flexibility, plotting capability
and speed of MATLAB to perform other studies. The modal approach is what
gives us the capability to create complete state space models of the system
mechanical dynamics in a form that can be used by the servo engineers in their
state space servo/mechanical models.

10.6.7.1 Equations of Motion — Physical Coordinates

We will start with the equations of motion in physical coordinates with forces
as shown in (10.29) and assume zero initial conditions. The reason we are
assuming zero initial conditions is that converting initial conditions requires
the inverse of the complete modal matrix, which is not convenient when using
ANSYS modal results to build a reduced (smaller size) model. Fortunately, a
large majority of real life problems can be solved with zero initial conditions.

mZ, +kz, -kz, =F
mz, -kz, +2kz, ~kz, =F,
mZ; -kz, +kz, =F,

e . .
IC's: z,,2,,2,,2,,2,,2, =0

(10.29)




274  Vibration Simulation Using MATLAB and ANSYS

Knowing the eigenvalues and eigenvectors normalized with respect to mass,
we can write the damped homogeneous equations of motion in principal
coordinates by inspection. The forces in principal coordinates,

F,, E,, and F; are obtained by premultiplying the force vector in physical

coordinates by the transpose of the normalized eigenvector:

F =x'F (10.30)

P

x, was defined in (10.20) as a 3x3 matrix of normalized displacement

eigenvectors. The multiplication then results in a 3x1 vector of forces in
principal coordinates. The resulting elements are entered in the appropriate
positions in the equations in principal coordinates below.

10.6.7.2 Equations of Motion — Principal Coordinates

The three equations of motion in principal coordinates become:

%, =F,
X,y +20,0,%, +®,’x,, =F,, (10.31a,b,c)

. . 2
X3 +2§3w3xp3 +@,x,; =F;

where o, ®,, and o, are the three eigenvalues, with units of radians/sec.
The “zeta” terms, {,, {, and {,, represent the percentages of critical damping

for each of the three modes, all of which can be different and are typically
obtained from experimental results. For example, 2% of critical damping
would give a { value of 0.02.

Now we can convert the second order differential equations above to state
space form by solving for the highest derivative:

%, =F,
X,, = B, —@x,, —20,0,%,, (10.32a,b,c)
ipf’ = Fp3 _ng

p3 2§3m3xp3



Chapter 10 Modal Analysis: State Space Form 275
Defining states:
X, = Xy, displacement of mode 1 (not of mass 1)
X, =X, derivative of displacement of mode 1
X; = X,, displacement of mode 2
X, = X,, derivative of displacement of mode 2
X5 = X, displacement of mode 3
Xs = X,, derivative of displacement of mode 3
Rewriting the equations of motion using the states:
X| =X,
X, =,
X3 =X,
) : (10.33a-f)
X, =K, - @)%, ~28,m,%,
X5 = Xg
xe = E; —wx, —28,0,x,
Rewriting in matrix form:
x=Ax+Bu (10.34)
x,7 [0 1 o 0 0 0 x,] [0]
X, 00 O 0 0 0 X, E,
X 00 0 1 0 0 X 0
= \ : u (10.35)
X, 0 0 -0, 20,0, O 0 X, E,
X, 00 O 0 0 1 X 0
%] (00 0 0 -o -2Lw]|x] |Fs

Now that the complete state space equations of motion are known, the six
states in principal coordinates can be solved for their frequency and/or time

domain responses.

Let us assume that we are interested in the three displacements and the three
velocities. The output matrix equation then becomes, where y, is the

displacements in principal coordinates:



276 Vibration Simulation Using MATLAB and ANSYS

(1 0 0 0 0 O[x,] [x]
01000 0[x,| |x
00100 Ofxy| [x
y,=Cx= = (10.36)
P 0001 0 0|lx,| [x
00001 0fx,| [x
LO 0 000 1_LX6 LX()_

With the six desired outputs in principal coordinates, we can back-transform
them into physical coordinates by the following transform:

rZl X1 0 x,, 0 x4 0 (ypl
Z 0 x, 0 x,, 0 x5 || Y2
Zy | _ Xy, = X 0 X 0 X 0 Iy,
. - n p -
z, 0 X 0 X5 0 X | Ve
Z X3t 0 x5, 0 X5 0 |¥s
L %3 ] L0 X 0 Xy 0 Xgg || Yo

i X Ypt T Xn2Yps F X013 Yps
Xn11¥p2 T Xn2¥ps T X013 Y56
X ¥p1 T X2 Yps T X023 Yps
Xp21Yp2 T X020 Vpa T X023Y 06
Xo31Ypr T X032 ¥p3 T X335

L Xn31Yp2 T Xu02¥ps T X033 Y 6 |

(10.37)

Instead of doing the two multiplications shown in (10.36) and (10.37), C
times x to get y_ and then premultiplying y, by x, to get the displacements
and velocities in physical coordinates, we could have done a single
multiplication if C were defined as shown in (10.38), using eigenvector
entries directly in the definition:



Chapter 10

Modal Analysis: State Space Form

277

X, O

0 x,

C - x1121 0
0 x,

Xp 0

L 0 xyy

Xqe 0 x5 0 W

0 x5 0 x5
X, 0 X, 0

0 x, 0 x4
L

0 x5, 0 x5

(10.38)

Rewriting the output equation using C defined in (10.38) and expanding to

see indi

r

vidual terms:
r.Xnu 0 x,
0 x,, O
—Cx = X 0 X
0 x, O
X 0 Xg5
| 0 x,; O

[ XXy H XX + X 5%
Xp X T XX, +X3X
XpX; X X3 + X, X
XXy HX 0¥y XX

XXy ¥ XXy + X 55X,

| Xn31 Xy T X 53Xy X556 |

0 x,, 0 (x
X2 0 Xu5 | X,

0 x, 0 |x
bSPTIR U SP9 | b 9

0 x,,, 0 |[xy
X3 0 X33 | X6 ]

( Xn11Yp1 ¥ X012 ¥ps T X013 Yps
Xo1¥p2 T X002 ¥ps TX013Y 06
XY HXn0¥ps TX003Y0s
Xn21Yp2 T X2 ¥pa T X036

xn31Ypl + xn32yw + xn33yp5

| Xn31Yp2 T Xn32Ypa X336 |

(10.39)

10.6.8 Individual Mede Contributions, Modal State Space Form

In Section 8.7 we discussed in detail how individual modes contribute to the
overall frequency response. Here we will show how to calculate individual
 modal contributions in modal state space form.

We start with repeating (10.35), the modal state space equations of motion.

T o1 o 0
00 0 0
o0 o 1
1o 0 - 20,0,
00 © 0
] oo o 0

0 0 x,] [0]
0 0 X, E,
0 0 X, 0
+
0 0 X, E,
0 1 X 0
_‘D§ —2§3(°3_ L X6 | _Fp3J

u  (10.40)



278 Vibration Simulation Using MATLAB and ANSYS

Notice how the three sets of uncoupled first order equations in (10.40) appear
as blocks of 2x2 coefficients along the diagonal. Note also that if the
eigenvalues, ,, and damping ratios, {,, are known, the entire system matrix

A can be filled out by inspection, as we will do in future chapters where
ANSYS results are used to automatically build a model.

The first 2x2 block along the diagonal

0 1
[o 0} (10.41)

represents the response of the first mode, the second 2x2 block

L
(10.42)

-0, 20,0,

represents the response of the second mode and the third 2x2 block

% ba]
(10.43)

2
— —2C3(1)3
represents the response of the third mode.

Note that the three modes are not coupled and the equations of motion in state
space modal form may be rewritten separately as:

%] [o 1x].[0] , ‘
= + u  model (10.44)
X, 0 0jix,| |E,

[ 0 1] 0

ﬂ:{ i [’*} u mode?2 (10.45)

| %, -0, —28,0, ]| x, E.

E 0 1] 0 |
’.‘5} - [ ) J[XS% u  mode3 (10.46)
| X6 —0y _2C3(°3 X Fp3

For the output equation, defining a version of (10.42) which will output only
displacements, not velocities:




Chapter 10 Modal Analysis: State Space Form 279

Expanding:

[x, ]
X3

Z Xt 0 X, 0 x5 O X

z, =X, 0 X, 0 X, O X3 (10.48)
4

Z4 Xt 0 X5 0 x5 0 X
5
[ X6 ]

Similarly, the output equations can be written separately as (10.49) to (10.51),
where the z, . subscript notation stands for the displacement of mass 3 due

to force at mass 1 contributed by mode 3. Here we are dealing with only the
z11 transfer function. The modal contributions to any of the four unique
transfer functions can be solved in a similar fashion.

Zymt X, 0 X, L

Ztmt | = | %o O x mode I ™ . (10.49)
_ZSI,ml xn}l 0 :

Zy\m2 -anz 0] X, .

Zyima | = | X2 O X mode 2 (10.50)
_Z31,m2 i _xn32 0_ !
lel,m3_ Fxnl.? 0] X

Zyims | = | Xas O [xs] mode 3 (10.51)
| Zims | [ Xa3 0] )

We are familiar with using (10.35) and (10.39) to solve for frequency
responses for systems. With the use of (10.44) to (10.51) we can plot and see
how each individual mode contributes to the overall response. We will
examine this further in the code seen in the next chapter.

10.7 Real Modes — Argand Diagrams, Initial Condition Responses of
Individual Modes

In Chapter 5, we introduced the concept of using Argand diagrams to visualize
complex modes and to show how the complex eigenvector components
combine to create “real” displacements and velocities. We will use the



280  Vibration Simulation Using MATLAB and ANSYS

MATLAB code tdof prop_damped.m to define the eigenvectors for Argand
plotting and solve for the transient responses.

The methodology followed is:

1) Solve the original undamped system equation for
eigenvalues and eigenvectors.

2) Plot the eigenvectors normalized to unity using a
deformed mode shape plot.

3) Normalize the displacement eigenvector entries with
respect to mass to convert to principal coordinates for
the proportionally damped case.

4) Form the system matrix in principal coordinates using
proportional damping.

5) Solve for the eigenvalues and eigenvectors of the
system matrix in principal coordinates.

6) Plot the real and imaginary displacements of each of the
normal modes separately, since the three modes are
uncoupled with proportional damping.

7) Back transform to physical coordinates using the
normalized displacement eigenvectors.

8) Plot the real and imaginary displacements of each of the
degrees of freedom separately.

For the undamped case we will use ¢l = ¢2 = 0 and the result will be “normal”
modes with “real” eigenvectors.

For proportional damping, we will start with the undamped eigenvectors and
add a percentage of critical damping to each mode. This will result in “real”
eigenvectors since proportional damping satisfies the Rayleigh damping
criterion ¢ =am+bk as discussed in Chapter 7.

10.7.1 Undamped Model, Eigenvectors, Real Modes
The code starts with executing tdofss_eig.m, which calculates the eigenvalues

and eigenvectors for the undamped problem, c1 = c2 = 0. The eigenvectors
are then normalized with respect to unity for plotting in Argand form.

% tdof prop_damped.m proportionally damped tdof model

% solve for the eigenvalues of the undamped system model




Chapter 10 Modal Analysis: State Space Form 281

tdofss_eig;
subplot(1,1,1);

% now normalize the undamped eigenvectors with respect to the position of
% mass 1, which will be set to 1.0 - for plotting of undamped Argand diagram

for cnt = l:length(omegad)
xmon(:,cnt) = xmo(:,cnt)/xmo(1,cnt);
end

xmonl

The eigenvalues and eigenvectors are:

omegaro =
0 (Note the two poles
0 at the origin)
0 + 1.0000i
0 - 1.0000i
0+ 1.7321i
0-1.73211
xmronl =
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0 0 0+1.0000i 0-1.0000i 0+1.7321i 0-1.7321i
1.0000 1.0000 0.0000 0.0000 -2.0000 -2.0000
0 0 0+0.0000i 0-0.0000i 0-3.4641i 0+ 3.4641i
1.0000 1.0000 -1.0000 -1.0000 1.0000 1.0000
0 0 0-1.0000i 0+1.0000i 0+1.7321i 0-1.7321i

Note that the pairs of eigenvalues for each mode are complex conjugates
of each other and that the pairs of eigenvectors for each mode are also
complex conjugates of each other.

Once again, some eigenvector elements have complex parts. Why do we call
them “real” when they contain imaginary parts?

“Real” eigenvectors refers to the fact that all of the position entries in the
eigenvector are not complex numbers [i.e., not of the form (a+jb)], but are real



282  Vibration Simulation Using MATLAB and ANSY'S

numbers. The fact that the velocity entries are complex numbers by virtue of
multiplying the “real” position eigenvector entries by the eigenvalue does not
make the eigenvectors “complex” but refers to the fact that in the undamped
case velocity is 90° out of phase with position.

1 1 1
nEE i -
m, _’V\’_ mzj ma"
O OO0 OO

Rigid-Body Mode, 0 rad/sec

T iy

m, m, W— | My

Q. Q_ 0O O__O O

Second Mode, Middle Mass Stationary, 1 rad/sec

‘_)|1‘(_ | —>-2h ——>1l(—

| m, H lmz —W— My
O 00O @)

Third Mode, 1.732 rad/sec

Figure 10.1: Mode shape plots, “real” modes.

For “real” eigenvectors, there are two ways of visualizing the mode shapes and
resulting motions. One method we have used several times before, the mode
shape plot, shows the deformed shapes of the system for each eigenvector.

Since for real eigenvectors all the degrees of freedom reach their maxima and
minima at the same times, any snapshot in time will show the relative
displacements, which is why we can plot a deformed mode plot as shown in
Figure 10.1.



Chapter 10 Modal Analysis: State Space Form 283

10.7.2 Principal Coordinate Eigenvalue Problem

The section of code below prompts for the amount of proportional damping,
zeta, and then sets up the equations of motion in principal coordinates. After
solving the eigenvalue problem, the eigenvalues and eigenvectors are sorted
and the magnitude and phase angle of the each eigenvector is defined.

% input proportional damping for equations in principal coordinate system
zeta = input('input value for zeta, default = 0.02, 2% of critical ... ');
if (isempty(zeta))
zeta = 0.02;
else

end

% setup proportionally damped state-space system matrix in principal coordinates

ass=[ O 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 -w272  2*zeta*w2 0 0
0 0 0 0 0 1
0 0 0 0 -w3”2  -2*zeta*w3];

% solve for the eigenvalues of the system matrix with proportional damping
[xmp,omegap] = eig(a_ss);
% take the diagonal elements of the generalized eigenvalue matrix omegap
omegapd = diag(omegap);
% now reorder the eigenvalues and eigenvectors from low to high frequency,
% keeping track of how the eigenvalues are ordered in reorder the
% eigenvectors to match, using indexhz
[omegaporder,indexhz] = sort(abs(imag(omegapd)));
for cnt = l:length(omegapd)
omegapo(cnt, 1) = omegapd(indexhz(cnt)); % reorder eigenvalues
xmpo(:,cnt) = xmp(:,indexhz(cnt)); % reorder eigenvector columns

end

% now calculate the magnitude and phase angle of each of the eigenvector
% entries

for row = 1:length(omegapd)




284  Vibration Simulation Using MATLAB and ANSYS

for col = 1:length(omegapd)
xmpomag(row,col) = abs(xmpo(row,col));
xmpoang(row,col) = (180/pi)*angle(xmpo(row,col));
end
end
omegapo
Xmpo
xmpomag

xmpoang

10.7.3 Damping Calculation, Eigenvalue Complex Plane Plot

The section below calculates the percentage of critical damping due to the
defined amount of input damping, zeta. For example, if 2% of critical
damping is defined as input, then we should see that the eigenvalues of the
equations of motion in principal coordinates plot as shown in Figure 5.2.

% calculate the percentage of critical damping for each mode
zetal =0

theta2 = atan(real(omegapo(3))/imag(omegapo(3)));
zeta2 = abs(sin(theta2))

theta3 = atan(real(omegapo(5))/imag(omegapo(5)));
zeta3 = abs(sin(theta3))

plot(omegap,'kx")

grid on

axis([-3 1-22))

axis('square’)

title('Proportionally Damped Eigenvalues')

xlabel('real')

ylabel('imaginary’)

text(real(omegapo(3))-1,imag(omegapo(3))+0.1,{'zeta = ',num2str(zeta2)])
text(real(omegapo(5))-1,imag(omegapo(5))+0.1,['zeta = ',num2str(zeta3)])

disp(‘execution paused to display figure, "enter" to continue'); pause




Chapter 10 Modal Analysis: State Space Form 285
Proportionally Damped Eigenvalues
I\ Feta =0 *
1.5 - - - - - U T [
I | |
I | |
,,,,,,,,,,,, reta=Q _ _ .
! T , +
t !
L R e
E- i 1 1
1 ! !
e or-——-—— 7 — == — == === - - = *. - - =4
g | | ‘
Y S —— T P e
I | t
I | |
AF----- + - === |- == === * - —— ==
3 1 1
i 1 1
A5F----- +mm - e |
| : +
-2 i | |
3 2 -1 0 1
real

Figure 10.2: Undamped model eigenvalue plot in complex plane.

For the undamped model, we should see that the eigenvalues, poles, should lie
on the imaginary axis — and they do.

Proportionally Damped Eigenvalues

2 :
| zeta=0.02
| | *
15k - ==~ = dme o [, [
| |
[ S — _‘L ,,,,,, # §tg=_0‘.02_fk - -4
i I i
I I |
| I |
0.5-*‘***v| —————— — - [l
2 | | 1
2 | I |
& OF-----g----- [ oo T
8
E I | I
= | | |
05 ----- T 1T [l
I | |
! ) i
Ar--=-=-- +- == R 4 - - =~ -
| I |
| I |
A5 - - - -~ b ——— [ [
I I |
| | *
2 | I |
3 2 1 0 1
real

Figure 10.3: Proportionally damped eigenvalue plot, zeta = 2% was input.

The eigenvalues for zeta = 0.02 plot slightly to the left of the imaginary axis.



286 Vibration Simulation Using MATLAB and ANSYS

10.7.4 Principal Displacement Calculations

We showed in (5.54), repeated below, how to calculate the displacements
when the system is started with a set of initial conditions which match the
eigenvector:

X(t - e"nlt (ejwnltx + e_jmnz‘x
) Ouit ¢ A j@t " Ot '12) t (1052)
=% (e.l 1 Xn1)+e nl (e 102 an)

Since our eigenvalues lie along the imaginary axis, their ¢ values are zero
and e” =1, the equations can be simplified to:

x(t) = e™'x  +e'x , = (10.53)

A time vector from 0 to 15 seconds is defined, and real and imaginary parts
are picked from the eigenvalues. Equation (10.52) is used to calculate the
motions.

% calculate the motions of the three masses for all three modes - damped case
t=0:.12:15;

sigmal 1 = real(omegapo(1)); % sigma for first eigenvalue for mode 1
omegapl 1 = imag(omegapo(1)); % omegap for first eigenvalue for mode 1

sigmal2 = real(omegapo(2)); % sigma for second eigenvalue for mode 1
omegap12 = imag(omegapo(2)); % omegap for second eigenvalue for mode 1

sigma2] = real(omegapo(3)); % sigma for first eigenvalue for mode 2
omegap21 = imag(omegapo(3)); % omegap for first eigenvalue for mode 2

sigma22 = real(omegapo(4)); % sigma for second eigenvalue for mode 2
omegap22 = imag(omegapo(4)); % omegap for second eigenvalue for mode 2
sigma31 = real(omegapo(5)); % sigma for first eigenvalue for mode 3
omegap31 = imag(omegapo(5)); % omegap for first eigenvalue for mode 3

sigma32 = real(omegapo(6)); % sigma for second eigenvalue for mode 3
omegap32 = imag(omegapo(6)); % omegap for second eigenvalue for mode 3

% displacements of mode 1 in principal coordinates

zpl11 = exp(sigmal1*t).*(exp(i*omegap11*t)*xmpo(1,1)); % mass 1
zp112 = exp(sigmal2*t).*(exp(i*omegap12*t)*xmpo(1,2)); % mass |

% displacements of mode 2 in principal coordinates

zp221 = exp(sigma2 1*t).*(exp(i*omegap2 1 *t)*xmpo(3,3)); % mass 2




Chapter 10 Modal Analysis: State Space Form o287

zp222 = exp(sigma22*t).*(exp(i*omegap22*ty*xmpo(3,4)); % mass 2
% displacements of mode 3 in principal coordinates

zp331 = exp(sigma3 1*t).*(exp(i*omegap3 1 *ty*xmpo(5,5)); % mass 3
zp332 = exp(sigma32*t).*(exp(i*omegap32*t)*xmpo(5,6)); % mass 3

10.7.5 Transformation to Physical Coordinates

The section of code below sets up the appropriate size matrices to enable
back-transforming from principal to physical coordinates.

% calculate the motions of each mass for mode 2
% define matrix of displacements vs time for each eigenvector

7221 = [zeros(1,length(t))
zp221
zeros(1,length(t))];

7222 = [zeros(1,length(t))
zp222
zeros(1,length(t))];

% back-transform from principal to physical coordinates
zmode21l =xn*z221;

zmode22 = xn*z222;

zlmode21 = zmode21(1,:);

z2mode21 = zmode21(2,:);

z3mode21 = zmode21(3,:);

zlmode22 = zmode22(1,:);

z2mode22 = zmode22(2,:);

z3mode22 = zmode22(3,:);

% calculate the motions of each mass for mode 3
% define matrix of displacements vs time for each eigenvector

2331 = [zeros(1,length(t))
zeros(1,length(t))
zp331];

7332 = {zeros(1,length(t))
zeros(1,length(t))
zp332];




288  Vibration Simulation Using MATLAB and ANSYS

zmode31 = xn*z331;

zmode32 = xn*z332;

zlmode31 = zmode31(1,:);
z2mode31 = zmode31(2,:);
z3mode31 = zmode31(3,:);
zlmode32 = zmode32(1,:);
z2mode32 = zmode32(2,:);

z3mode32 = zmode32(3,:);

10.7.6 Plotting Results

The plotting commands for mode 2 are listed below; those for mode 3 have
been eliminated for brevity.

% plot principal displacements of mode 2

plot(t,real(zp221),'k-' t,real(zp222),'k+-',t,imag(zp221),'k.-",t,imag(zp222),'ko-")
title('principal real and imag disp for mode 2')

legend('real','real','imag','imag')

axis([0 max(t) -1 1})

grid on

disp(‘execution paused to display figure, "enter” to continue'); pause
% plot physical disp of masses for mode 2

plot(t,real(zlmode21),'’k-',t,real(zl mode22),’k+-'.t,imag(zlmode21), ...
'k.-',t,imag(zl mode22),'ko-"}

title('physical real and imag disp for mass 1, mode 2')

legend('real','real','imag’,'imag")

axis([0 max(t) -0.5 0.5])

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

plot(t,real(z2mode21),’k-',t,real(z2mode22),'k+-',t,imag(z2mode21),...
'k.-",t,imag(z2mode22),'ko-")

title('physical real and imag disp for mass 2, mode 2")

legend('real','real','imag','imag")

axis([0 max(t) -0.5 0.5])

grid on

disp('execution paused to display ﬁgure, "enter" to continue'); pause

plot(t,real(z3mode21),'’k-'"t,real(z3mode22),’k+-',t,imag(z3mode21), ...




Chapter 10 Modal Analysis: State Space Form

289

%

%

%

'k.-',t,imag(z3mode22),’ko-")
title('physical real and imag disp for mass 3, mode 2')
legend('real','real','imag','imag’)
axis([0 max(t) -0.5 0.5])
grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

plot(t,real(zlmode21+z1mode22),’k-"t, real(z2mode2 1 +z2mode22), ...

'k+-',t,real(z3mode2 1+z3mode22),'k.-)
title('physical disp z1, 22, z3 mode 2')
legend('mass 1','mass 2','mass 3')
axis([0 max(t) -1 1])
grid on
disp(‘execution paused to display figure, "enter" to continue'); pause
plot subplots for notes

plot principal disp of mode 2

subplot(3,2,1)

plot(t,real(zp221),'k-'t,real(zp222),'k+-' t,imag(zp22 1), k.- t,imag(zp222),ko-)

title('principal disp for mode 2')
legend('real','real','imag','imag')
axis([0 max(t) -1 1])

grid on

plot physical disp of masses for mode 2

subplot(3,2,3)

plot(t,real(zl mode21),'’k-' t real(zl mode22),'’k+-',t,imag(zl mode21), ...

'k.-",t,imag(zlmode22),’ko-")
title('physical real and imag disp for mass 1, mode 2')
legend('real','real','imag','imag")
axis([0 max(t) -0.5 0.5])
grid on

subplot(3,2,4)

plot(t,real(z2mode21),'k-'t,real(z2Zmode22),'k+-',t,imag(z2mode21), ...

'k.-"t,imag(z2mode22),'ko-")
title('physical real and imag disp for mass 2, mode 2')
legend('real’,'real','imag','imag')
axis([0 max(t) -0.5 0.5])
grid on

subplot(3,2,5)

plot(t,real(z3mode21),'k-'t,real(z3mode22),'k+- t,imag(z3mode21), ...

'k.-',t,imag(z3mode22),'’ko-")
title('physical real and imag disp for mass 3, mode 2")
legend('real','real','imag','imag')
axis([0 max(t) -0.5 0.5])
grid on

subplot(3,2,6)




290 Vibration Simulation Using MATLAB and ANSYS

plot(t,real(zl mode2 1+z1mode22),'k+-",t real(z2mode2 1+z2mode22), ...
'k.-',t,real(z3mode2 1 +z3mode22),'ko-")

title('physical disp for z1, 22, z3 mode 2')
legend(‘mass 1',/mass 2','mass 3')

axis([0 max(t) -1 1])

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

subplot(1,1,1)

10.7.7 Undamped / Proportionally Damped Argand Diagram, Mode 2

As in the Argand diagrams explained in Chapter 5, the two complex conjugate
eigenvectors for each mode are plotted side by side. The direction of the
rotation of the eigenvector is indicated by the arrow associated with the
e™ or e’ terms. The addition of the two counter-rotating complex
eigenvectors for an arbitrary time “t” is shown in the middle and below the .
two individual eigenvector plots for each dof. The addition plot shows how
the two imaginary components cancel each other out, leaving only the real
portion of the motion.




Chapter 10 Modal Analysis: State Space Form 291
Velocity
Vector
im
9 —
I Pos =1 +0j
Pos =1+0j Vel=0-1j
Vel =0 + 1j 14+
Mode 2
DOF 1
— 7 Re
-2 -1 -2 -1 2: 2
i
e
2 Im / R -2
1 T -2 —
Imaginary Components of Two
Counter-Rotating Vectors
Cancel
Real Components
Im of Two Counter-
2T Rotating Vectors
Pos =0 +0j Add Pos=0+0j
Vel =0 + 0j 1+ Vel = 0 + 0]
1 1
i~ T
~2 -1
-t +
-2 4=
- 4
Im fm
2T -2 - 2
Pos=-1+0jr Pos = -1 + 0j
Vel =0-1j 11 T 1 Vel=0+1j
Mode 2
L DOF 3
I~ 1<
-2 -1

-1 —+

o L

Figure 10.4: Argand diagram for undamped or proportionally damped system, mode 2.




292  Vibration Simulation Using MATLAB and ANSYS

10.7.8 Undamped / Proportionally Damped Argand Diagram, Mode 3

Pos=1+0]
Vel =0 +1.732)

-4

Pos = -2+ 0j
Vel =0 - 3.464j

Pos=1+0j
Vel =0 +1.732)

-4

Mode 3
DOF 2

1

Pas=1+0}
Vel =0 -1.732)

l Pos =-2+0j
Vel = 0 + 3.484j
=
F——t—7+—+—+Re
-4 -2 2 4

-+

-2 4

-4 L

Pos =1 +0j
Vel = 0 -1.732)

Figure 10.5: Argand diagram for undamped or proportionally damped system, mode 3.




Chapter 10  Modal Analysis: State Space Form 293

10.7.9 Proportionally Damped Initial Condition Response, Mode 2

Figures 10.6 to 10.10 show the initial condition responses for mode 2 for
proportional damping of 2%. Mode 2 is the mode where mass 2 is stationary
and masses 1 and 3 are moving out of phase with each other with equal
amplitude.

Figure 10.6 shows the real and imaginary components of the two complex
eigenvector responses that make up mode 2. Note that the two imaginary
components are out of phase and cancel each other while the two real
components are overlaid and will add. Figures 10.7 to 10.9 show the real and
imaginary components for each of the three masses. The motions of mass 2
are zero, while the motions of masses 1 and 3 are out of phase with each other,
consistent with the shape of mode 2 in Figure 10.1. Figure 10.10 shows the
physical displacements of the three masses versus time. The Argand diagram
vectors for mode 2, Figure 10.4, can be matched with each figure for each
degree of freedom.

principal real and imag disp for mode 2

-

Figure 10.6: Principal real and imaginary displacements, mode 2.



94  Vibration Simulation Using MATLAB and ANSYS

physical real and imag disp for mass 1, mode 2

0.4
0.3
0.2

0.1

&

Figure 10.7: Physical real and imaginary displacements for mass 1, mode 2.

physical real and imag disp for mass 2, mode 2

Figure 10.8: Physical real and imaginary displacements for mass 2, mode 2.



Chapter 10 Modal Analysis: State Space Form g 295

physical real and imag disp for mass 3, mode 2
~ T

Figure 10.9: Physical real and imaginary displacements for mass 3, mode 2.

physical disp z1, z2, z3 mode 2

Figure 10.10: Physical displacements for masses 1, 2 and 3, mode 2.
10.7.10 Proportionally Damped Initial Condition Response, Mode 3

Figures 10.11 to 10.15 show the initial condition responses for mode 3 for 2%
proportional damping, where mass 2 moves twice as far and out of phase with
masses 1 and 3.

Figure 10.11 shows the real and imaginary components of the two complex
eigenvector responses that make up mode 2. As in the previous section, note



296  Vibration Simulation Using MATLAB and ANSYS

that the two imaginary components are out of phase and cancel each other
while the two real components are overlaid and will add. Figures 10.12 to
10.14 display the real and imaginary components for each of the three masses.
Figure 10.15 shows the physical displacements of the three masses versus
time. The Argand diagram vectors for mode 2, Figure 10.5, can be matched
with each figure for each degree of freedom.

principal disp for mode 3

Figure 10.11: Principal real and imaginary displacements, mode 3.

physical real and imag disp for mass 1, mode 3

Figure 10.12: Physical real and imaginary displacements for mass 1, mode 3.



Chapter 10 Modal Analysis: State Space Form 297

physical real and imag disp for mass 2, mode 3

Figure 10.13: Physical real and imaginary displacements for mass 2, mode 3.

physical real and imag disp for mass 3, mode 3

Figure 10.14: Physical real and imaginary displacements for mass 3, mode 3.



298  Vibration Simulation Using MATLAB and ANSYS

physical disp for z1, z2, z3 mode 3

1 T . ]

Figure 10.15: Physical real and imaginary displacements for masses 1,2 and 3, mode 3.
Problems
Note: All the problems refer to the two dof system shown in Figure P2.2.

P10.1 Write the homogeneous equations of motion in state space form for the
undamped two dof system with m; =m, =m =1, k, =k, =k =1. Set up the
eigenvalue problem and expand the determinant to reveal the characteristic
equation. Compare with the denominator terms from P2.2.

P10.2 Solve for the eigenvalues and eigenvectors in state space form.
Compare with the results from P7.1. What is the relationship between the
displacement and velocity eigenvector terms?

P10.3 (MATLAB) Modify the tdofss_eig.m code for the undamped two dof
system with m; =m, =m=1, k, =k, =k =1. Print out the eigenvalue and
eigenvector results and compare with the results from P10.2. What changes
are required to the MATLAB eigenvectors to make them match the P10.2
results? After normalizing with respect to mass, confirm that the equations of
motion consist of an identity mass matrix and a stiffness matrix with squares
of the eigenvalues along the diagonal.

P10.4 Write the equations of motion in principal coordinates in state space
form, knowing only the eigenvalues and eigenvectors, similar to (10.35). Use
the displacements of mass 1 and mass 2 as outputs. Show how the output
matrix C can be formulated to only require a single multiplication to give



Chapter 10 Modal Analysis: State Space Form 299

outputs (Section 10.6.7.2). Identify the 2x2 submatrices which define the state
equations of each mode. Are the individual modes uncoupled?

P10.5 (MATLAB) Modify the tdof prop_damped.m code for the two dof
system with m;, =m, =m=1, k, =k, =k =1. Plot the eigenvalue locations
in the s-plane for zero damping and for proportional damping of 2% (0.02).
List the eigenvalues and eigenvectors for the undamped and proportional
damping cases and note the differences. Plot the initial condition responses
when started in initial conditions which match each of the two eigenvectors.

P10.6 Plot Argand diagrams for the undamped system.



CHAPTER 11

FREQUENCY RESPONSE: MODAL STATE SPACE
FORM

11.1 Introduction

In Chapter 10 we constructed the modal form of the state equations for the
overall frequency response as well as for the individual mode contributions.
This short chapter of MATLAB code will carry out both overall and
individual mode frequency response calculations. The code will also allow us
to plot the different forms of frequency responses covered in Chapter 3.

11.2 Modal State Space Setup, tdofss modal xfer modes.m Listing

After executing the “tdofss_eig.m” code to provide eigenvalues and
eigenvectors, we enter a section of code that yields similar results to those
resulting from an ANSYS simulation. In the ANSYS case, we would have
access to the eigenvalues and mass normalized eigenvectors, similar to the
“xn” and “wl, w2 and w3” from tdofss_eig.m.

Since we can add proportional damping to our modal model, the code prompts
for a value for zeta.

Knowing zeta and the eigenvalues, the system matrix can be setup as shown in
(10.35), as 2x2 blocks along the diagonal. The three 2x2 submatrices of the
system matrix are defined for individual mode contribution calculations.

The next step is to define a 6x3 input matrix, 6 states and three possible inputs
representing forces applied to only mass 1, only mass 2 or only mass 3. We
start out by defining three separate 3x1 force vectors, one for each mass, F1,
F2 and F3. Each of these vectors is transformed from physical to principal
coordinates by premultiplying by xn transpose. The three 3x1 vectors are
padded with zeros resulting in three 6x1 vectors, which are then inserted as
columns in the 6x3 input matrix “b.”

The output matrix, “c,” is defined in one step as shown in (10.38) by
incorporating the appropriate elements of “xn.” However, only displacement

states are output, giving a 3x6 matrix.

The direct transmission matrix is set to zero.



302 Vibration Simulation Using MATLAB and ANSYS

%
%

%

%
%
%

%
%

%
%

%

%
%
%

%
%

tdofss_modal xfer modes.m state-space modal form transfer function analysis
of tdof model, proportional damping, modal contribution plotting

clf;

clear all;

run tdofss_eig.m to provide eigenvalues and eigenvectors

tdofss_eig;

note, this is the point where we would start if we had eigenvalue results from ANSYS,
using the eigenvalues and eigenvectors to define state space equations in

principal coordinates

define damping ratio to be used for proportional damping in the state space equation
in principal coordinates

zeta = input('input zeta, 0.02 = 2% of critical damping (default) ... ');

if (isempty(zeta))
zeta = 0.02;

else

end

setup 6x6 state-space system matrix for all three modes in principal
coordinates, a_ss

a ss=[0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 -w2"2  -2*zeta*w2 0 0
0 0 0 0 0 1
0 0 0 0 -w372  -2*zeta*w3];

setup three 2x2 state-space matrices, one for each individual mode
al_ss=a_ss(1:2,1:2);

a2_ss=a_ss(3:4,3:4);

a3_ss=a_ss(5:6,5:6);

transform the 3x1 force vectors in physical coordinafes to principal coordinates and
then insert the principal forces in the appropriate rows in the state-space

6x1 input matrix, padding with zeros as appropriate

define three force vectors in physical coordinates, where each is for
a force applied to a single mass

F1=[100];
F2=[010]; R

F3=[001];




Chapter 11: Frequency Response: Modal State Space Form 303

% calculate the three force vectors in principal coordinates by pre-multiplying

% by the transpose of the normalized modal matrix
Fpl =xn'*F1;
Fp2 =xn"*F2;
Fp3 = xn™F3;

% expand the force vectors in principal coordinates from 3x1 to 6x1, padding with zeros
b1 =[0Fpl(1) 0 Fp1(2) 0 Fp1(3)1; % principal force applied at mass 1
b2 = [0 Fp2(1) 0 Fp2(2) 0 Fp2(3)1; % principal force applied at mass 2
b3 =[0 Fp3(1) 0 Fp3(2) 0 Fp3(3)1’; % principal force applied at mass 3
b= [bl b2 b3];

% the output matrix c is setup in one step, to allow the "bode" command to

% output the desired physical coordinates directly without having to go

% through any intermediate steps.

% setup the output matrix for displacement transfer functions, each row

% represents the position outputs of mass 1, mass 2 and mass 3

% velocities not included, so ¢ is only 3x6 instead of 6x6

c=[xn(1,1) 0 xn(l,2) 0 xn(1,3) O
xn(2,1) 0 xn(2,2) 0 xn(2,3) 0
xn(3,1) 0 xn(3,2) 0 xn(3,3) O];

% define direct transmission matrix d

d = zeros(3,3);

11.3 Frequency Response Calculation

We will begin this section by defining the vector of frequencies to be used for
the frequency response plot. Then we will define a state space model, using
the matrices defined in the section above.

Because we are using a 6x3 input matrix and a 3x6 output matrix, we have
access to nine frequency response plots, the displacement for all three degrees
of freedom for three different force application points. To plot the four
distinct frequency responses, the appropriate indices are used to define
magnitude and phase.

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the logl0 value as limits, i.e. -1 is 10~-1 = 0.1 rad/sec, and 1 is
% 1071 = 10 rad/sec. The 200 defines 200 frequency points.




304 Vibration Simulation Using MATLAB and ANSYS

w = logspace(-1,1,200);

% define four state-space systems using the "ss" command
% sys is for all modes for all 3 forcing functions
% . sysl is for mode ! for all 3 forcing functions
% sys2 is for mode 2 for all 3 forcing functions
% sys3 is for mode 3 for all 3 forcing functions

sys = ss(a_ss,b,c,d);

syst = ss(al_ss,b(1:2,:),¢(:,1:2),d);
sys2 = ss(a2_ss,b(3:4,:),¢(:,3:4),d);
sys3 = ss(a3_ss,b(5:6,:),c(:,5:6),d);

% use the bode command with left hand magnitude and phase vector arguments
% to provide values for further analysis/plotting

[mag,phs] = bode(sys,w);
[magl,phs1] = bode(sys1,w);
[mag2,phs2] = bode(sys2,w);
[mag3,phs3] = bode(sys3,w);

% pick out the specific magnitudes and phases for four distinct responses
z11mag = mag(1,1,);
z21mag = mag(2,1,:);
z31mag = mag(3,1,:);
722mag = mag(2,2,);
z1 Imagdb = 20*log10(z1 1mag);
22 1magdb = 20*log10(z2 1 mag);
z3 1magdb = 20*log10(z3 1 mag);
z22magdb = 20*log10(z22mag),
z11phs = phs(1,1,:);
z21phs = phs(2,1,:);
z31phs = phs(3,1,:);
z22phs = phs(2,2,);

% pick out the three individual mode contributions to z11




Chapter 11: Frequency Response: Modal State Space Form

305

z111mag = magl(1,1,);

z112mag = mag2(1,1,:);
z113mag = mag3(1,1,:);
z111magdb = 20*log10(z111mag);
z112magdb = 20*log10(z112mag);
z113magdb = 20*log10(z113mag);
z111phs = phsl(1,1,:);

z112phs = phs2(1,1,:);

z113phs = phs3(1,1,:);

11.4 Frequency Response Plotting

% truncate peaks for plotting of expanded linear scale
zl1plotmag = z11mag;
z11l1plotmag = z111mag;
z112plotmag = z1 12mag;
z113plotmag = z1 13mag;
for cnt = I:length(z11mag)
if z11plotmag(cnt) >=3.0
z11plotmag(cnt) = 3.0;
end
if z111plotmag(cnt) >= 3.0
z111plotmag(cnt) = 3.0,
end
if z112plotmag(cnt) >=3.0
z112plotmag(cnt) = 3.0,
end

if z113plotmag(cnt) >= 3.0




306 Vibration Simulation Using MATLAB and ANSYS

z113plotmag(cnt) = 3.0;
end
end
% plot the four transfer functions separately, in a 2x2 subplot form

subplot(2,2,1)

semilogx(w,z1 Imagdb(1,:),'’k-")
title('state space, z11, z33 db magnitude")
ylabel('magnitude, db')

axis([.1 10 -150 507)

grid

subplot(2,2,2)

semilogx(w,z2 1magdb(1,:),'k-")

title('state space, z21, z12, 723, z32 db magnitude')
ylabel('magnitude, db')

axis([.1 10 -150 507)

grid

subplot(2,2,3)

semilogx(w,z3 1magdb(1,:),’k-")
title('state space, z31, z13 db magnitude’)
xlabel('frequency, rad/sec’)
ylabel('magnitude, db')

axis([.1 10 -150 50])

grid

subplot(2,2,4)

semilogx(w,z22magdb(1,:),'k-")

title('state space, z22 db magnitude')

xlabel('frequency, rad/sec')

ylabel('magnitude, db')

axis([.1 10 -150 50])

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

subplot(2,2,1)
semilogx(w,z11phs(1,:),’k-)
title('state space, z11, 233 phase)
ylabel(‘phase, deg")

grid

subplot(2,2,2)

semilogx(w,z21phs(1,:),'k-")

title('state space, z21, z12, 223, z32 phase)
ylabel('phase, deg')

grid

subplot(2,2,3)
semilogx(w,z31phs(1,:),'’k-")
title('state space, z31, z13 phase")




Chapter 11: Frequency Response: Modal State Space Form

307

xlabel('frequency, rad/sec')
ylabel('phase, deg')

grid
subplot(2,2,4)

semilogx(w,z22phs(1,:),’k-"

title('state space, z22 phase')

xlabel('frequency, rad/sec")

ylabel('phase, deg')

grid

disp(‘execution paused to display figure, “enter” to continue'); pause

% plot the overall plus individual mode contributions separately

subplot(2,2,1)

semilogx(w,z1 Imagdb(1,:),’k-")
title('State-Space Modal, z11 db magnitude")
ylabel('magnitude, db')

axis([.1 10 -60 40])

grid

subplot(2,2,2)

semilogx(w,z111magdb(1,:),'’k-")

title('State-Space Modal, z11 db magnitude of mode 1')
ylabel('magnitude, db")

axis([.1 10 -60 40])

grid

subplot(2,2,3)

semilogx(w,z112magdb(1,:),’k-")

title('State-Space Modal, z11 db magnitude of mode 2')
xlabel('frequency, rad/sec')

ylabel('magnitude, db")

axis([.1 10 -60 40])

grid

subplot(2,2,4)

semilogx{w,z113magdb(l,:),'’k-")

title('State-Space Modal, z11 db magnitude of mode 3')
xlabel(‘frequency, rad/sec')

ylabel('magnitude, db')

axis([.1 10 -60 40])

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

subplot(2,2,1)
semilogx(w,z11phs(1,:),'’k-")
title("State-Space Modal, z11 phase")
ylabel('phase, deg')

grid

subplot(2,2,2)

semilogx(w,z11 Iphs(1,:),’k-"




308 Vibration Simulation Using MATLAB and ANSYS

title("State-Space Modal, z11 phase of mode 1)
ylabel('phase, deg')

grid

subplot(2,2,3)

semilogx(w,z112phs(1,:),'’k-")

title("State-Space Modal, z11 phase of mode 2')
xlabel('frequency, rad/sec')

ylabel('phase, deg')

grid

subplot(2,2,4)

semilogx(w,z113phs(1,:),'’k-")

title('State-Space Modal, z11 phase of mode 3')
xlabel('frequency, rad/sec')

ylabel('phase, deg')

grid

disp(‘execution paused to display figure, "enter" to continue'); pause
subplot(1,1,1);
% plot the overlaid transfer function and individual mode contributions

loglog(w,z1 1mag(1,:),'k+:",w,z1 1 1mag(1,:),’k-',w,z112mag(1,:),'k-",w, ...
z113mag(1,:),'’k-")

title("State-Space Modal Mode Contributions, z11 db magnitude")

xlabel('frequency, rad/sec’)

ylabel('magnitude, db')

axis([.1 10 .001 100])

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

semilogx(w,z1 1mag(1,:),’k+:",w,z1 1 Imag(1,:),'’k-",w,z112mag(1,), ...
'k-",w,z113mag(1,:),’k-")

title('State-Space Modal Mode Contributions, z11 linear magnitude')

xlabel('frequency, rad/sec')

ylabel("magnitude')

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

semilogx(w,z1 1plotmag(l,:),'k+:',w,z1 1 1 plotmag(1,:),’kk-', ...
w,z112plotmag(1,:),’k-',w,z113plotmag(1,:),'’k-")

title('State-Space Modal Mode Contributions, z11 linear magnitude’)

xlabel('frequency, rad/sec’)

ylabel('magnitude')

axis([.1 10 0 3]);

grid

disp(‘execution paused to display figure, "enter” to continue'); pause

semilogx(w,z1 lphs(1,:),’k+:",w,z111phs(1,:),'’k-",w,z112phs(1,:),’k-', ...
w,z113phs(1,:),’k-")




Chapter 11: Frequency Response: Modal State Space Form 309

title('State-Space Modal Mode Contributions, z11 phase')
xlabel('frequency, rad/sec')

ylabel('phase, deg')
grid

11.5 Code Results — Frequency Response Plots, 2% of Critical Damping

state space, z11, z33 db magnitude state space, z21, 212, 223, z32 db magnitude

50 [RERAL AR 50— RN (RN
AR Con P o

; R R I BRI [N

o OF— -1 O T T T o OF--—17T N T T T O
°© AT | L © R Nt
) [ NN oI g R [
2 B0F ~-i-tttrHHE - A=t T 2 B0 — -+ 4 rHH e 1=+
S Lot oo ';E,, Cor ot [
@ [N [ R & [ R [T
Y., IR S I N T P R S R E 400L — -4 s h e - ks
[N Tl R [ R
[N [ RN Co o [T

150 L Loy 150 NI L
10" 10° 10’ 10" 10° 10'
state space, z31, z13 db magnitude state space, z22 db magnitude

50 T T T T TTTIT T T 7 TTT77 50 T~ T T T T T ITIT
N R Ry R Vo R
T\M R RNl [T

P OF ———rTTRONSA T T T T P O - ~— 17 mf/; ST
[N i [N [ SR ]

g R \WIIHII {"; o | lm
S B0 -l 4 HS - o N+ 4 H 3 BOF - -1+ 4 FHHE — o -k i
g [ R TN CE” [N ot
@ [ AR 1 \\\V\%- @ [ R R R
E 400 — —l— 4 4 FHH e~ - kb E 100F — ~1— 4 4 FHHI- - - k4 R
[ RN [ RN Lo R
Lo [T [N RN [T

150 L NN YT} | S L Ll
10" 10’ 10' 10" 10° 10'

frequency, rad/sec frequency, rad/sec

Figure 11.1: Magnitude output for four distinct frequency responses, proportional
damping zeta =2%.




310 Vibration Simulation Using MATLAB and ANSYS

state space, 211, z33 phase

phase, deg

a 0 1

T
[
[

TT
1ot
[

T+
[
1

+ 4
1

B B G B W WU L

N

10

state space, 231, z13 phase

PO
8 8

phase, deg

&
8

&
28
o,

Figure 11.2:

40

N
=3 <

magnitude, db
8

10°
frequency, rad/sec

State-Space Modal, z11 db magnitude

[IEERAL N B
L

.8 &

State-Space Modal, 211 db magnitude of mode 2

magnitude, db

TTTTTT LI
et
4y

[
e

Pl
RSy Ny N,
RN
beinn
Toanr -~
e
L1trgl

10
frequency, rad/sec

phase, deg

do
&
3

2%.

2

&
s

state space, z21, z12, 223, z32 phase

[EIR
NN
+ I
RN

Ll Ll L LoLb bt

10°
frequency, rad/sec

10

Phase output for four distinct frequency responses, proportional damping
zeta =

State-Space Modal, z11 db magnitude of mode 1
40

I
1
+

[ I
(IR |
+
i

20+ — FHHI- — = I 14
o R | bt
° i
I e B i - Uy [l T T T
2 [ |
‘g_m_,,\,LJL |
o | [ |
£ i [ i I
40 ---7TT a-T
I [ ! I
_50 I L 1 |t
10" 10° 10'
State-Space Modal, z11 db magnitude of mode 3
40 T T T N B AR
| [ R N | Lorrne
20 - —I— L L Lo o L L i
0 } orrrnn ! [ AN
1{ | orrrnen i e
g O~ =1 rmnr—fp-rTrmT
2 | radnn ) ot
E .20 -1 Lobidid
g’ | U]
£ | [ | iNJ L
-40 TTIT 1T TN
1 o | P
_60 1 i1 Ll " | N
o] 0 1
10 10 10

frequency, rad/sec

Figure 11.3: Magnitude output for z11 frequency response and individual mode
contributions.



Chapter 11: Frequency Response: Modal State Space Form 311

State-Space Modal, z11 phase State-Space Modal, z11 phase of mode 1

-17 [REEERIRL IR

IR [ AT

[N [T

AT95 - - - TrmOr TS T T OT

o [T

Vo [T

-180 e ]

[ RREIT! [T

o [T

805k - - £ A b A — b F bl

o NI

[ R [T

181 Lol Loy

., 0 1

10 10 10

State-Space Modal, z11 phase of mode 2 State-Space Modal, z11 phase of mode 3
Y TR T T
by P
[ RENL RN
SO - T TTANE T T T TN
4 Lo P
k-] st o
@ -100F ——1—+ 4+ +HHF — A~ ++ +14H
8 Pl R
£ [ AN REY o
7)) S PR R I T A A
! S EEREY R

i It
200! [ | bl
10" 10° 10'
frequency, rad/sec frequency, rad/sec

Figure 11.4: Phase output for z11 frequency response and individual mode contributions.

= LRI =1
AR
=i
i

magnitude, db

LK —

1
L oo uwin/ A

IR ERTY

frequency, rad/sec

Figure 11.5: Overlaid magnitude output for z11 frequency response and individual mode
contributions.

11.6 Forms of Frequency Response Plotting

This section of code is used to plot various forms of frequency responses for
the z11 transfer function, as shown in Chapter 3, Section 3.6. All the plots



312 Vibration Simulation Using MATLAB and ANSYS

except the Nyquist plot use user-defined damping and 200 frequency points.
The Nyquist section recalculates the system matrix to use a damping zeta of
0.02 and 800 frequency points in order to plot in the designated format.

% plot only z11 transfer function in different formats
orient talt
% log mag, log freq

subplot(2,1,1)

loglog(w,z1 1mag(1,:),'’k-")

title('z11, z33 log mag versus log freq')
ylabel('magnitude')

grid

subplot(2,1,2) .

semilogx(w,z11phs(1,:),'’k-")

title('z1 1, z33 phase versus log freq')

xlabel('frequency, rad/sec')

ylabel(’phase, deg")

grid

disp(‘execution paused to display figure, "enter” to continue'); pause
% db mag, log freq

subplot(2,1,1)

semilogx(w,z1 Imagdb(1,:),’k-")
title('z1 1, z33 db mag versus log freq’)
ylabel('magnitude, db")

grid

subplot(2,1,2)

semilogx(w,z1 1phs(1,:),’k-"

title('z1 1, z33 phase versus log freq")
xlabel('frequency, rad/sec')
ylabel('phase, deg')

grid

disp(‘execution paused to display figure, "enter" to continue'); pause
% db mag, lin freq

subplot(2,1,1)

plot(w,z1 1magdb(1,:),'’k-")

title('z11, z33 db mag versus linear freq’)
ylabel('magnitude, db')

grid

subplot(2,1,2)

plot(w,z11phs(1,:),'’k-")

title('z1 1, z33 phase versus linear freq')
xlabel('frequency, rad/sec')




Chapter 11: Frequency Response: Modal State Space Form 313

%

%

%

ylabel('phase, deg')
grid

disp(‘execution paused to display figure, "enter" to continue'); pause
lin mag, lin freq

subplot(2,1,1)

plot(w,z1 1mag(1,:),'k-")

title('z11, z33 linear mag versus linear freq’)

ylabel('magnitude')

grid

subplot(2,1,2)

plot(w,z1 1phs(1,:),'’k-")

title('z11, z33 phase versus linear freq")

xlabel('frequency, rad/sec')

ylabel('phase, deg')

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

linear real versus log freq, linear imag versus log freq

z] 1real = z1 1 mag. *cos(z1 1 phs*pi/180); % convert from mag/angle to real
z11realdb = 20*log10(z1 1 real);

z11limag = z1 Imag.*sin(zl phs*pi/180); % convert from mag/angle to imag
z1limagdb = 20*log10(z1 limag);

subplot(2,1,1)

semilogx(w,z1 1real(1,:),’k-")

title('z1 1, z33 linear real mag versus log freq')
ylabel('real magnitude’)

grid

subplot(2,1,2)

semilogx(w,z11imag(1,:),k-")

title('z11, z33 linear imaginary versus log freq')
xlabel(*frequency, rad/sec’)

ylabel('imaginary magnitude');

grid

disp(‘execution paused to display figure, "enter" to continue'); pause
linear real versus linear freq, linear imag versus linear freq

subplot(2,1,1)

plot(w,z11real(1,:),'’k-")

title('z11, z33 linear real mag versus linear freq')
ylabel('real magnitude')

grid




314 Vibration Simulation Using MATLAB and ANSYS

subplot(2,1,2)

plot(w,z11imag(1,:),'’k-")

title('z1 1, z33 linear imaginary versus linear freq")
xlabel('frequency, rad/sec')

ylabel('imaginary magnitude');

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

real versus imaginary (Nyquist), redo frequency response with 800 points for
finer frequency resolution for Nyquist plot and use zeta = 0.02 to fit on plot

zeta = 0.02;
[0 i 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 -W272  -2*zeta*w2 0 0
0 0 0 0 0 1
0 0 0 0 w372 -2*zeta*w3];

w = logspace(-1,1,800);

sys = ss(a_ss,b,c,d);

[mag,phs] = bode(sys,w);

z1 lmag = mag(1,1,:);

z1 1magdb = 20*log10(z1 1mag);

z11phs = phs(1,1,:);

z11real = z1 lmag. *cos(z1 1 phs*pi/180); % convert from mag/angle to real
z1limag = z1 1 mag.*sin(z1 1phs*pi/180); % convert from mag/angle to imag
subplot(1,1,1)

plot(z11real(1,:),z1 limag(1,:),’k+:"

title('z1 1, z33 real versus imaginary, "Nyquist™)

ylabel('imag')

axis('square’)

axis([-15 15 -15 15])
grid




Chapter 11: Frequency Response: Modal State Space Form 315

Problem
Note: This problem refers to the two dof system shown in Figure P2.2.

P11.1 (MATLAB) Modify the tdofss_modal_xfer_modes.m code for the
two dof system with m; =m, =m=1, k, =k, =k =1 and plot the frequency
responses with and without the individual mode contributions overlaid.



CHAPTER 12

TIME DOMAIN: MODAL STATE SPACE FORM

12.1 Introduction

In Chapter 7 we derived the equations of motion in modal form for the system
in Figure 12.1. In this chapter we will convert the modal form to state space
modal form and obtain the closed form transient solution for the forcing
function and initial conditions described in Figure 12.1. MATLAB will then
be used to solve the same equations using the ode45 function.

12.2 Equations of Motion — Modal Form
The applied step forces are as shown in Figure 12.1. The initial conditions of

position and velocity for each of the three masses are displayed in Table 12.1,
the same as Figure 9.1 and Table 9.1.

Figure 12.1: Step forces applied to tdof system.

Mass 1 Mass 2 Mass 3
Zy =0 Zgp = -1 Zy =1
zy =-1 Zy =2 Zyy =2

Table 12.1: Initial conditions applied to tdof system.

Repeating results from Chapter 9, where we developed the modal form of the
equations of motion:



318 Vibration Simulation Using MATLAB and ANSYS

The force vector in principal coordinates from (9.8) is:

(1 1 1] -3
NERENCINE) 3
o 1|1 1 1 1 [3v2
F =2F=|F,|=—|—= 0 —|| 0|]=—=|==| (12.1)
P L Y R I N
; 121 -V6
V6 V6 el 6 ]
With initial conditions from (9.6), (9.7):
- - r _J§ T
0 3
z,, =vm _—2‘/2 , 2, =m l/;— (12.2)
NG -1J6
L 2 6

Using the results of the eigenvalue solution, we can write the homogeneous
equations of motion by inspection. The forcing function can be added to the
right-hand side, knowing F,:

x=Ax+Bu o (123)
5,7 [o 1 0 0 0 0 [x, 1 [0]
x| [0 0 0 0 0 0 x| |E,
x| [0 0 0 1 0 0 X, 0
= ) + u (12.4)
X, 0 0 - 20w, O 0 X, E,
x| [0 0 0 0 0 1 Xs 0
(X, [0 0 0 0 -0 200, ||x| |Fs]

with initial conditions of:



Chapter 12 Time Domain: Modal State Space Form 319

(12.5)

LZPM i

2
?)
;Ll
a‘%w‘& N|§| N‘é‘ wlg =

12.3 Solving Equations of Motion Using Laplace Transforms

Now that we know the complete state space equations of motion in principal
coordinates and the initial conditions on the six states in principal coordinates,
the equations can be solved in the time domain. The first order equations of
motion above are similar in nature to the second order equations of motion in
Table 7.2. The three sets of first order equations in modal state space form are

uncoupled as were the three second order equations of motion in modal form
(7.89).

Expanding the three sets of equations:

X, =X,
x, =F,u
X, = X,
12.6a-
X, = -w)x; —20,0,x,+Fu ( D
X5 =X,
Xe = — 03X, = 28,0, +F;u
Taking the Laplace transform of the first two equations above:
sx,(8) —x,(0) =X, (s)
(12.7a,b)

Fl
sX,(8)—x,(0) = F,u(s) =—
s

Solving for x,(s) :



320 Vibration Simulation Using MATLAB and ANSYS

8, (8) = %,(0) = x,(s)
F1
s[sx,(8)— x,(0)] —x,(0) = F,u(s) ==
S

sle(s)—F—+sx (0) +x,(0) (12.8a-)

no =2 20, 10
S S S

. (5)= ~3 0 _3m
\/_ 3s?

The three terms on the right-hand side of (12.8f) represent the displacement of
the first mode of vibration due to the force, initial displacement and initial
velocity, respectively. This equation for x,(s) is the same as for z,(s) in

(9.17). Using the same back-transformation yields the identical result for the
principal displacement as for z,,(t) in (9.20).

2
+0— 3m t

xl(t) = \/:—SE 3
J_ 3t
2f 3 (12.9)

The two sets of equations for modes 2 and 3 can be solved for x,(t) and x,(t)

in a similar fashion, again giving results which are the same as for
z,(t) and z;(t) in (9.27) and (9.34). The three velocity states in principal

coordinates can be defined by differentiating the displacement states.

Summarizing the solution in principal state space coordinates:



Chapter 12 Time Domain: Modal State Space Form 321
I £ B
23 3
_t_B
X, NI
X, W2 32 V2 V2
X T—Tcost—7c05t+7smt
x(t)y=| "’ |= (12.10a-f)
X4 3\/— \/_ \/E
——sint+—sint+—cost
X5 2 2
RN

__\1/_—.*._\/:0 \/_t+£cos\/_t—Tsln\/—t

\/—f ft \/_\/_ \[_t—Tcs\/_t

Let us assume that we are interested in three displacements and three
velocities; the output matrix is shown below in (12.11), repeated from (10.38):

[x,;, 0 x 0 x 0 ]

nl2 nl3

0 x,, 0 x,, 0 X,
Xy 0 X 0 X, O
0 x 0 x5 0 x,p

Xn31 0 xn32 0 xn33 0

0 x4 0 x5 0 X3 ]

(12.11)



322 Vibration Simulation Using MATLAB and ANSYS

_Zl_ _anl 0 x, 0 x, 01 _xl_
z, 0 X, 0 x, 0 X, ||%;
z, Xom 0 X,p 0 x,,, O X3
. = CX =
Z, 0 x,y 0 X, 0 X,y || X4
Z3 X3t 0 x5, 0 X, 0 Xs
| Zs ] L0 X 0 Xp 00 Xy ][ X

( 1 1 1 1
— 0 —= 0 — o0
R -
1 1 1
0 — 0 — 0 —|r -
\/g J2 \/g X,
1 -2 X,
— 0 0 0 — 0
_ V3 J6 X5
1 -2 || x
0 — 0 0 0 — 4
NE) J6 || x,
1 -1 1 X
— 0 —= 0 — 0 |L7sd
NE) V2 Je6
1 -1 1
0 — 0 — 0 —
LB 2 J6 | (12.12)

With (12.12) we have the complete time domain results in physical
coordinates.

12.4 MATLAB Code tdofss_modal_time ode45.m —
Time Domain Modal Contributions

12.4.1 Modal State Space Model Setup, Code Listing

This first section executes tdofss eig.m to calculate the eigenvalues and
eigenvectors. It then sets up the 6x6 system matrix and defines three
individual mode 2x2 submatrices.

The force vector in physical coordinates is defined, applying step forces as
defined in Figure 12.1. It is transformed to a forcing function in principal
coordinates and expanded to 6x1 size by padding with zeros. To specify the
input matrices for each of the three modes, three 2x1 submatrices are defined.

The output matrix is setup as a 3x6 matrix, to calculate displacements. Once
again, three submatrices of 3x2 size are defined for the individual modes.



Chapter 12 Time Domain: Modal State Space Form 323

%
%

%

%
%
%

%
%

%
%

%

%
%
%

%

tdofss_modal_time_ode45.m state space modal form transfer function analysis
of tdof model, proportional damping, modal contribution plotting

clf;

run tdofss_eig.m to provide eigenvalues and eigenvectors

tdofss_eig;

global a_ssal ssa2 ssa3 ssbbl b2b3u

note, this is the point where we would start if we had eigenvalue results from ANSYS,
using the eigenvalues and eigenvectors to define state space equations in

principal coordinates

define damping ratio to be used for proportional damping in the state space equation
in principal coordinates

zeta = input(‘input zeta, 0.02 = 2% of critical damping (default) ... ');

if (isempty(zeta))
zeta = 0.02;

else

end

setup 6x6 state-space system matrix for all three modes in principal
coordinates, a_ss

ass=[ 0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 -w22 -2*zeta*w2 0 0
0 0 0 0 0 1
0 0 0 0 -w3"2  -2*zeta*w3];

setup three 2x2 state-space matrices, one for each individual mode

al _ss=a ss(1:2,1:2);

a2_ss=a_ss(3:4,3:4);

a3_ss=a_ s5(5:6,5:6);

transform the 3x1 force vector in physical coordinates to principal coordinates and
then insert the principal forces in the appropriate rows in the state-space

6x1 input matrix, padding with zeros as appropriate

F=[10-2];

Fp = xn"*F;

expand the force vectors in principal coordinates from 3x1 to 6x1, padding with zeros

b=[0Fp(1) 0 Fp(2) 0 Fp(3)]; % principal forces applied to all masses




324  Vibration Simulation Using MATLAB and ANSYS

%
%
%

%

%
%

%

bl =b(1:2);
b2 =b(3:4);
b3 =b(5:6);
the output matrix c is setup in one step, to allow the "bode" command to
output the desired physical coordinates directly without having to go
through any intermediate steps.
setup the output matrix for displacement transfer functions, each row
represents the position outputs of mass 1, mass 2 and mass 3
velocities not included, so ¢ is only 3x6 instead of 6x6
c=[xn(1,1) 0 xn(1,2) 0 xn(1,3) 0

xn(2,1) 0 xn(2,2) 0 =xn(23) 0

xn(3,1) 0 =xn(3,2) 0 xn(3,3) 0J;
cl =c¢(;,1:2);
c2=c(:,3:4);
3 =c¢(:,5:6);

define direct transmission matrix d

d=0;

12.4.2 Problem Setup, Initial Conditions, Code Listing

Now that the model is in place, we can solve for transient response. The input
scalar, “u” is set to “1,” for a unity step function. The total time is set and a
vector of time span from 0 to 10 seconds (default) is setup for input to the ode

routine.

The two 3x1 initial condition displacement and velocity vectors with initial
displacements and velocities from Figure 12.1 are set up, then transformed to
principal coordinates. Next the 6x1 initial condition vector is constructed
from appropriate elements of the two 3x1 vectors. We are now ready to solve
the problem.

%

transient response using the ode45 command

u=1;

ttotal = input('Input total time for Simulation, default = 10 sec, ... ");
if (isempty(ttotal))

ttotal = 10;
else




Chapter 12 Time Domain: Modal State Space Form 325

%
%

%

end
tspan = [0 ttotal];

calculate the initial conditions in principal coordinates using the inverse of the
normalized modal matrix

xOphys =[0-1 17 % initial condition position, physical coord
x0dphys = [-1 2 2] % initial condition velocity, physical coord
%0 = inv(xn)*xOphys; . g

x0d = inv(xn)*x0dphys;

create the initial condition state vector

x0ss = [x0(1) x0d(1) x0(2) x0d(2) x0(3) x0d(3)];
x0ss1 = x0ss(1:2);

x0ss2 = x0ss(3:4);

x0ss3 = x0ss(5:6);

12.4.3 Solving Equations Using ode4S, Code Listing

The ode45 “options” parameter, which can be used to control many options
for use in the solution, is set to a null vector.

Next, the total response in principal coordinates and the three individual mode
responses in principal coordinates are calculated using MATLAB’s ode45
differential equation solver. Four functions, listed separately in the following
sections, are used by ode45 to define the equations to solve.

The responses in principal coordinates are then transformed to physical
coordinates.

%

%

use the ode45 non-stiff differential equation solver
options=[]; % mno options specified
total response, principal coord, states are modes of vibration

[t,x] = ode45('tdofssmodalfun’,tspan,x0ss,options);

% mode 1 response, principal coord

[t1,x1] = oded5('tdofssmodall fun',tspan,x0ss1,options);

% mode 2 response, principal coord




326 Vibration Simulation Using MATLAB and ANSYS

%

5

%

e

%

&

%

e

%

5

[t2,x2] = ode45('tdofssmodal2 fun',tspan,x0ss2,options);
mode 3 response, principal coord

[13,x3] = ode45(‘tdofssmodal3fun',tspan,x0ss3,options);
total response, physical coord

Z_ode = ¢*x’;
mode 1 response, physical coord

o ————s

z_odel = cl*x1'; ’
mode 2 response, physical coord

z ode2 = c2*x2';
mode 3 response, physical coord

z_ode3 = c3*x3";

12.4.4 Plotting, Code Listing

%

%

%

plot displacements in principal coordinates
subplot(1,1,1);

plot(tl x1(:,1),'k+-",t2,x2(:,1),'kx-",t3,x3(:,1),'’k-)
title('Displacements in Principal Coordinate System, ode45")
xlabel('Time, sec')

ylabel('Displacements')

legend('zp1','zp2','zp3',2)

grid

disp('execution paused to display figure, "enter" to continue'); pause

axis([0 1 -2 2]);

disp(‘execution paused to display figure, "enter" to continue'); pause

plot displacements in physical coordinates

plot(t,z_ode(1,:),’k+-'t,z_ode(2,:),’kx-'t,z_ode(3,:),'’k-")
title('Displacements in Physical Coordinate System, ode45")
xlabel('Time, sec’)

ylabel('Displacements')

legend('z1','22','23',3)

grid

disp(‘execution paused to display figure, "entet” to continue"); pause

load previous closed-form solutions for tplot, z1, 22, z3 if zeta = 0




Chapter 12 Time Domain: Modal State Space Form 327

%

if zeta ==
load tdof_modal_time_z122z3;

plot(t,z_ode(1,:),'’k-",t,z_ode(2,:),'’k-'t,z_ode(3,:),’k-',tplot,z1,'k.-"tplot,z2, ...
k.- tplot,z3,'k.-")

title('Displacements in Physical Coordinate System from ode4S (ode) ...

and Closed Form (cf)")

xlabel('Time, sec')

ylabel("Vibration Displacements’)

legend('ode dof 1','ode dof 2','ode dof 3','cf dof 1','cf dof 2','cf dof 3")

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

else
end

plot the modal contributions to the motion of masses 1, 2 and 3

plot(tl,z_odel(l,:),'k+-'12,z_ode2(1,:),'’kx-",t3,z_ode3(l1,:),k-")
title('Displacement of dof 1 for Modes 1, 2 and 3, ode45")
xlabel('Time, sec')

ylabel('Displacements')

legend('Mode 1','Mode 2','Mode 3")

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

plot(tl,z_odel(2,:),’k+-'t2,z_ode2(2,:),'’kx-",t3,z_ode3(2,:),'’k-")
title('Displacement of dof 2 for Modes 1, 2 and 3, ode45')
xlabel('Time, sec')

ylabel('Displacements')

legend("Mode 1','Mode 2','Mode 3")

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

plot(tl,z_odel(3,:),’k+-'12,z_ode2(3,:),’kx-'t3,z_ode3(3,:),’k-")
title('Displacement of dof 3 for Modes 1, 2 and 3, ode45")
xlabel('Time, sec’)

ylabel('Displacements")

legend('Mode 1','Mode 2','Mode 3")

grid

12.4.5 Functions Called: tdofssmodalfun.m, tdofssmodallfun.m,

tdofssmodal2fun.m, tdofssmodal3fun.m

The ode45 differential equation solver calls function files depending on which
solution is being performed. The four functions for calculating the system
response as well as individual responses of modes 1, 2 and 3 are listed below.
Each simply defines the state equation where the derivative of the state vector




328 Vibration Simulation Using MATLAB and ANSYS"

is equal to the system matrix times the states plus the input matrix times the
input: X= Ax + Bu. The “global” assignments make all the variables

defined available both to the calling program and to the function.

System response:

function xprime = tdofssmodalfun(t,x)
% function for calculating the transient response of tdof_ss_modal_time_ode45.m
global a_ssal_ssa2 ssa3_ssbblb2b3u

xprime = a_ss*x + b*u;

Mode 1 response:

function xprime = tdofssmodall fun(t1,x1)
% function for calculating the transient response of tdof_ss_modal_time_ode45.m
global a_ssal ssa2 ssa3 ssbblb2b3u

xprime = al_ss*x1 + bl*u;

Mode 2 response:

function xprime = tdofssmodal2fun(t2,x2)
% function for calculating the transient response of tdof ss_modal time_ode45.m
global a_ssal ssa2 ssa3 ssbbl b2b3u

xprime = a2_ss*x2 + b2*u;

Mode 3 response:

function xprime = tdofssmodal3fun(t3,x3)
% function for calculating the transient response of tdof ss_modal_time ode45.m
global a ssal ssa2 ssa3 ssbblb2b3u

xprime = a3_ss*x3 + bl*uy;




Chapter 12 Time Domain: Modal State Space Form 329

12.5 Plotted Results

The following figures should be compared with Figures 9.2 through 9.7, which
were plotted using the closed form modal solutions.

Displacements in Principal Coordinate System, ode45 £

)
i
)
| | 1 ) i
g | 1 | T ) 1 i i 1
F-TJ s ) Y [Ny U N S s N Y T S (G E
£ | 1 | ' i 1 i i l
o 1 1 I i i i ! 1
Ty N S
2 | { i 1 | i 1 i 1
a | 1 1 ' 1 1 | l
A e e i B et el it il Bl ol
| | | 1 ! 1 l | )

I 1 | I 1 | 1 '
'257777\777\7777\777T777l77777“_I__'7 N
——at |
I el e H e Rt i -
— zp3 | | | 1 1 | : | i
35 T I i I 1 I 1 i 1 r

0 1 2 3 4 5 6 7 8 9 10

Time, sec
Figure 12.2: Displacements in principal coordinate system using ode45.
The motions of the rigid body and two oscillatory modes are clearly seen.

Displacements in Principal Coordinate System, ode45

22— ) T

Displacements

Time, sec

Figure 12.3: Displacements in principal coordinate system, expanded scales to see initial
conditions.



330 Vibration Simulation Using MATLAB and ANSYS

Displacements in Physical Coordinate System, oded5

Displacements

Time, sec

Figure 12.4: Displacements in physical coordinate system.

Displacements in Physical Coordinate System from ode45 (ode) and Closed Form (cf)
. . - .

5 ; T v T — =
| ! ! . \ [ : — ode dof 1
' | | | — ode dof 2
0P gt P Lo e — w4 _i__|— odedof3 ||
! 1 t —e— cfdof 1
J : : —e— cfdof 2
]

cfdof 3

Vibration Displacements
=
T
1
i
1
i
!
|
1
|
I
|
|
|
I
1
I
]
1
|
I

Time, sec

Figure 12.5: Displacements in physical coordinate system — comparing closed form
solution from Chapter 7.

The three plots below show how one can study the motions of degrees of
freedom due to individual modes. Use zeta = 0 when running
tdofss_modal_time_ode45.m in order to plot the closed form solution.



331

Time Domain: Modal State Space Form

Chapter 12

Displacement of dof 1 for Modes 1, 2 and 3, ode45

sjuswaoeldsig

Time, sec

lacement of mass 1 for modes 1, 2 and 3.

isp

D

.

12.6

Figure

Displacement of dof 2 for Modes 1, 2 and 3, ode45

e — - — — b — —

sjuswaoeidsig

-25

10

Time, sec

Displacement of mass 2 for modes 1, 2 a-nd 3.

12.7

Figure



332 Vibration Simulation Using MATLAB and ANSYS

Displacement of dof 3 for Modes 1, 2 and 3, ode45

T T
; —— Mode 1
—— Mode 2

Displacements

Time, sec

Figure 12.8: Displacement of mass 3 for modes 1, 2 and 3.
Problem

P12.1 Using the initial conditions and forcing functions from P7.4, solve for
the time domain response of the states in principal coordinates in closed form
using Laplace transforms. Define the output matrix if the outputs required are
the displacements of both masses.



CHAPTER 13

FINITE ELEMENTS: STIFFNESS MATRICES
13.1 Introduction

The purpose of this chapter is to use two simple examples to explain the basics
of how finite element stiffness matrices are formulated and how static finite
element analysis is performed.

Chapter 2 discussed building global stiffness matrices column by column,
giving a unit displacement to the dof associated with each column and entering
constraint forces for each dof along the column. This chapter will show
another method of building global stiffness matrices, based on using element
stiffness matrices, combining them in an orderly way to generate the global
stiffness matrix. The first example uses the lumped parameter 6dof example
seen in Section 2.2.4. The second example uses a two-element cantilever.
Static condensation is used to prepare for a development of Guyan reduction
in the next chapter.

The next chapter will use element mass matrices to assemble global mass
matrices and will introduce dynamics using finite elements.

13.2 Six dof Model — Element and Global Stiffness Matrices

Figure 13.1: Six dof stiffness matrix model.



334 Vibration Simulation Using MATLAB and ANSYS

13.2.1 Overview

The global stiffness matrix for the model in Figure 13.1 was defined
previously by inspection (Table 2.2). Each column of the matrix was defined
by giving a unit displacement to the dof associated with that column and then
defining the constraints required to hold the system in that configuration. This
method works very well for hand calculations, but creating stiffhess and mass
matrices with computers requires a different, more systematic approach, where
individual element stiffness matrices are developed and combined to give the
global stiffness matrix.

We can define an element stiffness matrix for each of the springs in the figure,
where the size of the element stiffness matrix is (nxn), and n is the total
number of degrees of freedom associated with the element. For a uni-axial
spring, there are two degrees of freedom, the displacements in the “z”
direction at both ends, hence a 2x2 stiffness matrix.

Each element stiffness matrix can be set up using the “inspection” method, by
displacing first the left-hand dof for the first column, and then the right-hand

dof for the second column as shown in Figure 13.2.

13.2.2 Element Stiffness Matrix

dof, dof,

._/\/_3

k

Fi=k ﬁf_/\/—.(_ F,=k
1

o
F,=-k (—--——/\/—.—) F,=k

Figure 13.2: Spring element stiffness matrix development.



Chapter 13 Finite Elements: Stiffness Matrices 335

The resulting element stiffness matrix, k,, for a general uni-axial spring
element is then:

ko= 5k (13.1)
eli — _'ki ki .
For spring element 3, for example, the element stiffness matrix would be:
Ky, = ’ (13.2)
’ _ks ks .

13.2.3 Building Global Stiffness Matrix Using Element Stiffness Matrices
The total number of degrees of freedom for the problem is 6, so the complete
system stiffness matrix, the global stiffness matrix, is a 6x6 matrix. Each row
and column of every element stiffness matrix can be associated with a global

degree of freedom.

For element 1, which is connected to degrees of freedom 1 and 2:

1" and 2™ columns of global stiffness matrix

T (13.3)
K - k, -k | z 1% rowof globalstiffness matrix
“ |-k, k | z, 2™ rowof globalstiffness matrix

For element 2, which is connected to degrees of freedom 1 and 6:

1" and 6" columns of global stiffness matrix

Z Zg (13.4)
K = k, -k,| z 1% rowof globalstiffness matrix
|-k, k, | z, 6" rowof globalstiffness matrix

For element 3, which is connected to degrees of freedom 2 and 3:

2™ and 3" columns of global stiffness matrix ,
z, 1z, (13.5)
- |: k, —k3} z, 2™ row of globalstiffness matrix
el,3

|-k, k, | z, 3" rowof globalstiffness matrix



336  Vibration Simulation Using MATLAB and ANSYS

For element 4, which is connected to degrees of freedom 3 and 4:

3 and 4™ columns of global stiffness matrix

z, 1z,
K- k, —k,| 2z 3 rowof globalstiffness matrix
-k, k.| z, 4" rowof globalstiffness matrix

For element 5, which is connected to degrees of freedom 4 and 5:

4™ and 5" columns of global stiffness matrix

z, 2z
- ks ks | z, 4"rowof globalstiffness matrix
|-k ks | z, 5%rowof globalstiffness matrix

For element 6, which is connected to degrees of freedom 3 and S:

3" and 5" columns of global stiffness matrix

Zy Zs
| k¢ —k¢| z; 3" row of globalstiffness matrix
o0k, kg z, 5" row of globalstiffness matrix

For element 7, which is connected to degrees of freedom 2 and 5:

2™ and 5" columns of global stiffness matrix

Z, Zs
K- k, -k,| z, 2™ rowof globalstiffness matrix
-k, Kk, z; 5" row of globalsstiffness matrix

(13.6)

(13.7)

(13.8)

(13.9)

The global stiffness matrix starts out as a 6x6 null matrix, then each element is
cycled through and its elements added to the previous matrix. The initial null

matrix is:



Chapter 13 Finite Elements: Stiffness Matrices : 337

[0 0 0 0 0 OW
0 00O0O0O
000O0O00O0
k, = (13.10)
£ 10 000O0O
000066 O00Q0
0 0 0 0 0 O]
After adding the element stiffness matrix for element 1:
[k, % 000 0}
-k k 00 0O
0 0 00 0O
k, = (13.11)
8 0 0 0000
0 0 0000
L 0 0 00 0 0]
After adding the element stiffness matrices for elements 1 to 2:
k,+k, -k, 0 0 0 -k, |
-k, kk 000 O
0 0 000 O
k, = (13.12)
¢ 0 0 000 O
0 0 000 O
|k, 0 00 0 Kk, |
After adding the element stiffness matrices for elements 1 to 3: A
[k, +k, -k, 0 0 0 —k,|
-k,  k+k, -k, 0 0 O
0 —k, k, 0 0 0
k, = (13.13)
8 0 0 0 00 O
0 0 0 00 O
| -k, 0 0 00 k, J

After adding the element stiffness matrices for elements 1 to 4:



338 Vibration Simulation Using MATLAB and ANSYS

_kl

[k, +k,

_kl
k, +k,
_k3

0
_k3
k, +k,
__k4
0
0

k

4

0
0
k
0

0

4

O OO o o o

[ e N e N =]

e
N

After adding the element stiffness matrices for elements 1 to 5:

[k, +k, -k, 0 0 0 -k,

-k, k+k, Kk, 0 0 o0

Lol 0 ke ketkg k000
: 0 0 -k, k,+k, -k, 0
0 0 0 -k, k, 0

| -k, 0 0 0 0 k|

After adding the element stiffhess matrices for elements 1 to 6: -

[k, +k, -k 0 0 0 -k

-k, k+k, -k 0 0o 0

T T A A T T PR
: 0 0 —k,  k+k, -k, 0
0 0 -k, —k, ky+k, O

|k, 0 0 0 0k

(13.14)

(13.15)

(13.16)

After adding the element stiffness matrices for elements 1 to 7 we have the

final global stiffness matrix.

[k, +k, -k, 0 0 0
-k, k +k,+k, -k, 0 -k,
K = 0 -k, k,+k,+k, -k, -k,
& 0 0 -k, k, +k; -k
0 —k, -k, -k,  ks+ks+k,
| -k, 0 0 0 0

(13.17)



Chapter 13 Finite Elements: Stiffness Matrices 339

This checks against the original global stiffness matrix defined by inspection
in Table 2.2 and fulfills the symmetry requirement.

1 2 3 4 -5 6

1] (k, +k,) -k, 0 0 0 %, |
2| -k, (k+k, +k;) -k, 0 -k, 0
3l 0 -k, k,+k,+k,) -k, -k, 0
4 0 0 -k, (k, +k;) -k 0
51 0 -k, -k, -k, (ks+k,+k,) O
6| -k, 0 0 0 0 k, |
(13.18)

13.3 Two-Element Cantilever Beam

We will now do a static finite element displacement analysis of a two-clement
cantilever beam. We start by showing the original model and defining the
degrees of freedom for the idealized beam, Figure 13.3.

Note that even though the left-hand side node is grounded in the actual beam,
there are degrees of freedom associated with the node to allow generating
global stiffness and mass matrices for all nodes. The constrained degrees of
freedom will be accounted for once the complete global stiffness matrix is
available. For this model, each of the three nodes has two degrees of freedom,
a translation and a rotation.



340 Vibration Simulation Using MATLAB and ANSYS

'Element 1
E,L,1

5

L /L

Element 2
Ez’ Iz’ l2

Original Beam

dof, dof, ' dof;

z, Z3
1 { | 2 / | 3
01 \7 62 \7 03
: dof, dof,

of,

Idealized Beam
Node, dof Definition

Figure 13.3: Two-element cantilever beam model and node definition.
13.3.1 Element Stiffness Matrix
The element stiffness matrix can be developed by using basic strength of

materials techniques to analyze the forces required to displace each degree of
freedom a unit value in the positive direction:



Chapter 13 Finite Elements: Stiffness Matrices 341

6EI 12EI

6

2E1
: 4E1
—6EI

Column 1 Column 2

-]

-6E1 3
_GEI /‘2@ f :;
Cf 2EL 6EI

_12131 Column 3 Column 4

dof Definition: I N

-

Figure 13.4: Beam element stiffness matrix terms.
13.3.2 Degree of Freedom Definition — Beam Stiffness Matrix

Using the degrees of freedom in Figure 13.5 results in the following element
stiffness matrix:

12 6 -12 6
TETT
6 4 6 2

—_
~
—
—_—
[
—

ky,=EL| '~ ‘' " (13.19)




342 Vibration Simulation Using MATLAB and ANSYS

L

dof, dof,
z1 zz
. A
62
dof, dof,

Beam Element
Node, dof Definition

i

Figure 13.5: Beam element node and degree of freedom definition.

13.3.3 Building Global Stiffness Matrix Using Element Stiffness Matrices

To build the global stiffness matrix, we start with a 6x6 null matrix, with the
six degrees of freedom being the translation and rotation of each of the three
nodes, again including the constrained node 1 degrees of freedom:

0 0 0
000
0 00
k, =

£ 10 00
0 00
10 0 0

o O O O o ©
[ - T e B 2 I -

S O O O o O

displacement of node 1
rotation of node 1
displacement of node 2

The two 4x4 element stiffhess matrices are:

kel,l =E ][

) (13.20)
rotation of node 2
displacement of node 3
rotation of node 3
-12 6]
Tor
% 2
o (13.21)
12 -6
Ton
-6 4
¥




Chapter 13 Finite Elements: Stiffhess Matrices 343

2 6 -2 6
L © 5
6 4 6 2
2o, o1
k,, =E,L, _122 _26 122 _26 (13.22)
6 2 6 4
L L L L

Building up the global stiffness matrix, element by element, inserting element
1 first:

[12EL, 6E] -12EI 6E] T
3 2 3 2 0 O
B I ; I
6EI, 4El, —6EI 2E]
2 2 0 0
11 11 11 11
~12E,I, -6EI, 12EI, -6EI,
kK = 311 211 311 211 0 0 (13.23)
¢ 11 ll 11 11
6EI, 2EI —6EI  4E]
. - 00
l] ll 1l 1]
0 0 0 0 00
0 0 0 0 0 0]

Inserting the element 2 terms leaves k, :



344  Vibration Simulation Using MATLAB and ANSYS

[ 12EI, 6E|], -12E,], 6E,[, 0
I Iy L I
Iy L Iy L

0

L I L L I 5 Iy

—12E,I, -6E,], [12E111+12E212] [—6EIII+6E212] -12E,I, 6E,l,

I;

6E], 2E], (~6E,Il , 6E:L, ] (41311I 4B, ] —6E,I, 2E,l,
2 2
lf 1 ] li L 1, 1 1,
0 0 -12E,1, —6E,1, 12E,I, —-6E,l,
L 12 K 12
2 2 2 2
0 0 6E,]I, 2E,I, —6E,I, 4E.l,
L . : £
(13.24)
Note how the contributions for the stiffness elements for node 2 from the left-

hand and right-hand beams add together.

13.3.4 Eliminating Constraint Degrees of Freedom from Stiffness Matrix

We now have the entire global stiffness matrix, including the degrees of
freedom which are constrained, the translation and rotation of node 1 (the first
two rows and columns of k, ). To eliminate the constrained degrees of

freedom, we eliminate the rows and columns which correspond to the
constrained global degrees of freedom, reducing the global stiffness matrix to

a 4x4 matrix:

[(12E1, 12E,I,) (-6E]l,  6E,I,| =12E,I, 6E,l,
ERAT ERERT L R
1 2 1 2 2 2
6Bl 6E,L,) (4BL 4EL) -6E1, 2E]
12 2 1 1 I 1
kg = 1 2 1 2 2 2
~12E,], —6E,1, 12E,I, —6E,],
L L L ;3
6E,], 2B,1, —6E,I,  4E,I,
B B e
L 2 2 2 2

(13.25)




Chapter 13 Finite Elements: Stiffness Matrices 345

To facilitate hand calculations, we will make the two-beam elements identical,
with the same E, I and lengths, l. The global stiffness matrix can then be
rewritten as:

[ 24 -12 6
= 0 —= -
I |
o T F 1
k_ = EI 13.26
g -12 -6 12 -6 ( )

T P P
6 2 -6 4
T 1 F 1

13.3.5 Static Solution: Force Applied at Tip

We have all the information required to solve a static problem. For example,
we could solve for the displacements of the system for a z direction force
applied at the tip of the beam. The equation for static equilibrium of the
system is:

kz=F (13.27)

Expanding:
kgu kglz kg13 kg” Z K
Koo K Ko Ky || 2, = E (13.28)
kg31 kg32 kg33 kg34 Z3 K
ke Ko Ky Kyu || 2, F,
Where:

z, is translation of node 2
z, is rotation of node 2
z, is translation of node 3
z, is rotation of node 3

E is z force applied to node 2



346 Vibration Simulation Using MATLAB and ANSYS

F, is y moment applied to node 2
F, is z force applied to node 3
F, is y moment applied to node 3

13.4 Static Condensation
13.4.1 Derivation

Solving the static equation is trivial using a computer, but doing a 4x4 inverse
by hand is difficult, so we will reduce the problem to a 2x2 problem using
static condensation. Static condensation is not typically used for static
problems, but is the precursor for Guyan reduction (dynamic condensation),
which will be introduced in the eigenvalue analysis in the next chapter.

Static condensation involves separating the degrees of freedom into “master”
and “slave” degrees of freedom. If master dof’s are chosen such that they
include all degrees of freedom where forces/moments are applied and also
degrees of freedom where displacements are desired, the resulting solution is
exact. If the slave dof set includes dof’s where forces/moments are applied
and/or where displacements are desired, the technique will create errors.

For an exact static solution, master dof’s are chosen as dof’s where
forces/moments are applied and where displacements/rotations are desired.

For dynamic problems master degrees of freedom are typically chosen as
displacements of the higher mass nodes and rotations of the higher mass
moment of inertia nodes, with slave degrees of freedom being the
displacements and rotations of the relatively lower inertia nodes.

For the two-element cantilever, we will solve for the two translations of node 2
and node 3 as master degrees of freedom, and will condense (reduce out) the
two rotations. We will develop the theory first, then will substitute our
cantilever example.

The first step is to rearrange the degrees of freedom, rows and columns of the
stiffness matrix, into dependent (slave) displacements to be reduced, z,, and
independent (master) displacements, z,. This involves moving the second

and fourth rows and columns of the cantilever stiffness matrix up to become
the first and second rows and columns, which moves the first and third rows
and columns down to the second and fourth positions.



Chapter 13 Finite Elements: Stiffness Matrices - 347

kz=F (13.29)

k., k,||lz, F, N,
= (13.30)
k,, Kk, ||Z F, )
Multiplying out the first matrix equation:
k,z, +k,z, =F, (13.31)
Solving for z, :

z, =k (F, -k,z,) (13.32)

If no forces (moments) are applied at the dependent (slave) degrees of
freedom, F, =[0], and the equation above becomes:

z, =k (-k,z,)=-k'k,z, | (13.33)

a aa

We can now rewrite the displacement vector in terms of z, only:

z -k k -k k
z = a | _ aa” - ab Zb - aa abzb (1334)
z, I z,

Defining a transformation matrix for brevity:

z, -k 'k, T, :
I e =Tz 13.35
Lb:l { I ]Zb { I JZb ’ ( :

T, =-k'k (13.36)

Where:

Substituting back into the original static equilibrium equation:

kz = k(Tz,) = F (13.37)

Mutltiplying both sides by T"to reduce the number of degrees of freedom
from (a + b) to b:



348  Vibration Simulation Using MATLAB and ANSYS

(T'kT)z, = T'F (13.38)

Expanding the term in parentheses above, and redefining it to be kj, :

. k, Ky |[T,]
ky, =T'kT=[T; 1] = ‘| *
K, Kyl I

[T
= I:(Tazkaa+ ky,) (T;:kab+kbb):| ab:|

= (Toky+ Ky )T, + (ToKy, +ky, )T

: 13.39
=Tk, T, +k, T, +Tik, +kg ( )

aa “ab

= (K Kk (kK + Ky (CkK,) + (K kDK, + Ky,

ba taa a ba"aa

=k k 'k, -k, k 'k, -k, k. k, +k,

ba aa ba"aa " ab ba"taa ™ ab

= ky -k, k. k

ba"aa"“ab

where: T, =-k_'k, and TI =-k k.

So, the original (a + b) degree of freedom problem now can be transformed to
a “b” degree of freedom problem by partitioning into dependent and
independent degrees of freedom, and solving for the reduced stiffness matrix
k;, and reduced force vector F, :

F, =T'F
T Fa
=[T; 1] £ | T,F, + F, (13.40)
= Fb - kbak;alFa



Chapter 13 Finite Elements: Stiffness Matrices 349

Then the reduced problem becomes:
k;,z, =F, (13.41)

After the z, degrees of freedom are known, the z, degrees of freedom can be
expanded from the z, masters using, if F, = [O]:

z, =-k 'k, z, (13.42)
13.4.2 Solving Two-Element Cantilever Beam Static Problem

We will now solve the example cantilever for a force applied at the tip.
Earlier we showed that the stiffness matrix is:

[ 24 -12 6|
T T
2
k, = EI 12 % 12 6 (13.43)
F P P P
6 2 6 4
L 1? 1 P I
Rearranging rows, 1 to 3,2 to 1,3 to 4 and 4 to 2:
o & 2
1 1 1
6 2 6 4
2 2
k, = EI ;4 I 112 é (13.44)
5 0 = 3
1 | 1
-12 -6 12 -6
P F P

Rearranging columns, 1to 3,2 to 1, 3 to 4 and 4 to 2:



350 Vibration Simulation Using MATLAB and ANSYS

82, =
11 1
2 4 6 -6
2 2

k=gr| ! b T (13.45)
s 6 24 -12
T
6 -6 -12 12
T PP

Breaking out and identifying the four submatrices of dependent (a) and
independent (b) degrees of freedom:

8 2 0 -6
kaa =E kab=£2I
12 4 6 -6
‘ (13.46a-d)
L EI[O0 6 . _Eif24 -12
T P|l-6 -6 P12 12
Finding the inverse of k, :
-1 1 2 _1
k!'=—— (13.47)
14EI| -1 4
-1[-6 -6
Kk, = — (13.48)
141| 24 -18
EI [ 144 -108
k, kl'k, =— 13.49
b 1413[—108 144} (13.49)



Chapter 13 Finite Elements: Stiffness Matrices

351

k;, =k, -k, k 'k

ba"*aa"™ab

. _EI[192 —60
T 4P| -60 24

b =

1008EI| 60 192

_EI([336 -168] [ 144
© 148 ||-168 168 | | -108

24 60
60 192

w140 24 607 P
~ 72EI

ﬂ (13.50)

} (13.51)

Solving for the two displacements, z, for a tip force of magnitude P:

z

_ 2| _ gl

z, = =k, Fy
Z3

P (24 600
= (13.52)
72EI| 60 192 || P
6] s
_ e e0]_pol 72 | PG
T2E1{192] EI}1921 EI}|8
72 3
The tip displacement is:
8Pr
= 13.53
TS (13:33)

The well-known solution for the displacement of the tip of a cantilever is:

_PU

Knowing that the total length of the cantilever, L, is 21:

(13.54)



352  Vibration Simulation Using MATLAB and ANSYS

_PL _PQI’ _ 8PP

z. = = = 13.55
3B  3EI 3El ( )

The reduced problem has provided the correct solution. Once again, normally
we would not solve a reduced static problem except during a hand calculation,
but the derivation of static condensation will be useful in the next chapter
when dynamic condensation, Guyan reduction, is introduced.

Problems

P13.1 Assemble the global mass and stiffness matrices for Figure P2.1
element by element. Compare results with P2.1 results.

P13.2 In Section 13.4.2 we solved for the displacements of a two-element
cantilever beam with a tip load by reducing out the rotations of the beam.
Solve the problem by reducing out the rotations of the middle and tip nodes
and the displacement of the middle node. Use a symbolic algebra program to
invert the 3x3 k,, matrix.



CHAPTER 14

FINITE ELEMENTS: DYNAMICS
14.1 Introduction

The chapter starts out with discussions of various mass matrix formulations.
The 6dof lumped mass example from Chapter 2 is used for the lumped mass
matrix example. A two-element cantilever is used to develop the consistent
mass example. Using the same technique as in the previous chapter, the global
mass matrix is built up as an assemblage of element mass matrices. A method
analogous to static condensation, Guyan reduction, is developed and used to
reduce the size of the two-element cantilever problem. The cantilever is then
solved for its eigenvalues by hand using Guyan reduction. The same
cantilever is solved for eigenvalues and eigenvectors using MATLAB and
results are compared to the hand calculations.

Following the two-element cantilever example, a second MATLAB code
allows solving for eigenvalues and eigenvectors for a uniform cantilever beam
with user-defined number of elements. The results of the MATLAB code are
compared with the results from an ANSYS model for the same 10-element
cantilever.

This 10-element cantilever will be the last eigenvalue analysis in the book
using MATLAB. Further chapters will start with eigenvalue results from
ANSYS models, which will be used to build state space MATLAB models.
These MATLAB models are then used for frequency and time domain
analyses. This chapter serves as a bridge between carrying out analyses
completely in MATLAB and using ANSYS results as the starting point for
state space MATLAB models. Hence, we will reintroduce ANSYS
eigenvalue/eigenvector results and start becoming familiar with their form and
interpretation.

14.2 Six dof Global Mass Matrix

The lumped mass matrix is simple to construct because there is only a single
degree of freedom associated with each mass element. This leads to the 6x6
diagonal mass matrix below, which can be constructed in the same manner as
the 6dof stiffness matrix in the previous chapter.



354  Vibration Simulation Using MATLAB and ANSYS

{ml 0 0 0 0 0
0 my 0 0 0 O
mg |0 0 m 0 0 0 141
0 0 0 m O O
0 0 0 0 m 0
(0 0 0 0 0 m

14.3 Cantilever Dynamics
14.3.1 Overview — Mass Matrix Forms
In order to solve for the dynamics of the cantilever beam, we need to develop
a mass matrix to complete the equations of motion. For a beam finite element,
there are a number of different mass matrix formulations, each of which will
be covered below:

1) Lumped mass, displacements only

2) Lumped mass, displacements and rotations both included

3) Consistent mass — distributed mass effect
14.3.2 Lumped Mass
Beam-element lumped parameter mass and inertia terms in the mass matrix
relate point inertial loads to point accelerations and give only diagonal terms.

Equation (14.2) below shows the lumped mass matrix including both
displacements and rotations:

[m_l] 0 0 0
2
3 I
g_kb 0 0 .
24 2A
m, = ol (14.2)
0 0 [—J 0
: 2
3 1
0 0 0 ﬁ_,_b
I 24 2A )]

For the lumped mass for displacement terms only, the (2,2) and (4,4) terms in
(14.2) would be set to zero. Notation is as follows: m is mass per unit length,



Chapter 14  Finite Elements: Dynamics - ° Co 355

lis the element length, I is the cross-sectional moment of inertia about the y /

axis and A is the cross section area. This lumped mass formulation assumes a
prismatic beam (same area and moment of inertia along the length) and
effectively lumps half of the mass and inertia at each end (Archer 1963).

14.3.3 Consistent Mass

Lumped mass formulations were state of the art in structural dynamics until
Archer’s classic paper introduced the consistent mass matrix in 1963.

We will see in the development below that the consistent mass matrix for a
beam clement is a filled matrix. The filled matrix can be combined with other
consistent mass matrices of other elements of the structure, in the same manner
as the element stiffness matrices are combined, to yield the final global mass
matrix.

The element consistent mass matrix for a prismatic beam is, with mass per unit
length m and length | (Weaver 1990):

156 221 54 -131

Coml| 22l 4P 131 3P
Me=W00] 54 131 156 —221
-131 -31* -221 41

(14.3)

Figure 14.1 shows the unit accelerations of each of the four degrees of
freedom which correspond to the four columns of the consistent mass matrix,
analogous to the beam element stiffness description in Chapter 13.



356 Vibration Simulation Using MATLAB and ANSYS

— - ~
212 132
-
4l
Column 1 Column 2 - 313
1561
2~ .
=221 3 3
541 - =37 41
c o
-+ b 7—1—5//(1
—131? 2212
132 Column 3 ’ Column 4
VA
I e
dof Definition: U

Figure 14.1: Beam element consistent mass matrix terms.
14.4 Dynamics of Two-Element Cantilever — Consistent Mass Matrix

We already have the global stiffness matrix for the two-element cantilever
beam from (13.26):

24 -12 6]
YT OF
o T ¥ 3
k, = EI 14.4
8 -12 -6 12 -6 (14.4)
T F T T
6 2 -6 4
I GO U R I

The global mass matrix (using consistent mass) can also be built by combining
the terms from each of the beam elements as follows:



Chapter 14  Finite Elements: Dynamics 357

[156m,], 22m1? 54m],
2m?  4m1} 13m, 1}
1 | 54m, 13m]} (156m,l, +156m,l,)

m, =—— 3 2 2
¢ 420 -13m¥P -3ml (-22m,F’ +22m,1)
0 0 54m,1,
0 0 -13m,L
- - (145)
—13m,1? 0 0
-3m,1} 0 0

(-22m,I’ +22m,2) 54m,l, —13m,l
(4m,’ +4m,)  13m,} —3m,l;
13m,12 156m,l, —22m,I;

~3m,1} -22m,l;  4m,l, |

Once again, assuming the two elements have the same properties and lengths,
the global mass matrix becomes:

[ 156ml 22ml*> 54ml  —13ml? 0 0
22ml*  4ml® 13ml® —3ml’ 0 0
1| 54ml  13ml> 312ml 0 54ml  -13ml®
m = (14.6)
£ 420| -13ml*> —3m!® 0 8ml’ 13ml? —3ml®
0 0 54ml 13ml® 156ml  -22mi*
| 0 0 -1Bml’> -3ml’ -22ml* 4ml’ |

Taking into account the two constrained degrees of freedom at the built in end,
we can eliminate the first two rows and columns:

312ml 0 54ml  -13ml’

m = 1] 0 8ml* 13ml* —3ml’

¢ 420 54ml  13ml* 156ml -22ml?
-13ml> -3mP’ -22ml* 4mP®

(14.7)

Having the mass and stiffness matrices allows us to solve the eigenvalue
problem for the homogeneous equations of motion:

m,i+k,z=[0] (14.8)



358 Vibration Simulation Using MATLAB and ANSYS

In order to solve the problem by hand, we will need to find several inverses, so
we will again see if we can cut the 4x4 problem down to 2x2 size. We will
now use Guyan reduction to reduce the size of the problem.

14.5 Guyan Reduction

Guyan reduction is a method of decreasing the number of degrees of freedom
in a dynamics problem, similar to the process of static condensation in a statics
problem. Unlike static condensation, however, Guyan reduction introduces
errors due to the approximations made. The magnitude of the errors
introduced depends upon the choice of degrees of freedom to be reduced, the
dependent or slave degrees of freedom. The most popular choice of degrees
of freedom to be reduced are translations of nodes with relatively lower
masses and rotations of nodes with relatively lower mass moment of inertia.
This leaves translations of relatively larger mass nodes and rotations of
relatively larger mass moment of inertia nodes as the independent degrees of
freedom. In a typical finite element problem, the analyst will define masters as
degrees of freedom where forces/moment are applied, where displacements or
rotations are required for output, or where known large masses/mass moments
of inertia occur. The finite element program will then be allowed to choose an
additional set of degrees of freedom and add them to the master set. Typically
the program sorts along the diagonal of the mass matrix, adding degrees of
. freedom associated with the larger terms.

14.5.1 Guyan Reduction Derivation

Starting with the undamped equations of motion:

mi +kz =[0] (14.9)

Rearranging and partitioning into displacements to be reduced, z,, and

independent displacements, z, :

maa mab_ ia kaa kab za Fa
o+ = (14.10)
zZ, Ky, Ky, ]2 F,

mba mbb i
Multiplying out the first matrix equation:
m, %z, +m % +k,z +k,z, =F, (14.11)

Solving the above for z, :



Chapter 14  Finite Elements: Dynamics : 359

z, =k, (F, -k,z,-m_7, —m,Z
a aa(l a b b b b) (1412)
= _k;akabzb +k;; (Fa _maaia —mabih)

Instead of letting z, depend upon the entire right-hand side of (14.13), the
approximation of static equilibrium is introduced:

z, =k k,z, (14.13)

a

Typically the choice of degrees of freedom to be reduced does not include any
degrees of freedom to which forces are applied, thus F, = 0. The static

equilibrium approximation basically sets the term in brackets in (14.12) to
zero. Setting F, = 0 and using the second derivative of (14.13), we can see

the form of m,, :

0 = Fa _maaza _mabzb
= —maaza _mabzb
_ -1 . .
- _maa (_kaakabzb) _mabzh

14.14a,b
=m,k_k, —m, ( )

aa”aa " ab

m, =m_k_k

aa aa - ab

We assume that the m_Z, terms are zero and that m,, and m_ are related as
in (14.14b). The force transmission between the Z, and Z, degrees of

freedom is related only to the stiffnesses as denoted in (14.14), hence the
“static equilibrium” approximation.

Assuming (14.13) holds, the displacement vector z can be written in terms of
z, only:
z K.k, T,
z=| *|=| " *|z,=| |z, =Tz 14.15
[ZJ [ I } ’ [ I J ’ ’ ( :

T, =—k'k (14.16)

aa ab

where:



360 Vibration Simulation Using MATLAB and ANSYS

T= L, 14.17)
=| (14.

Substitution of (14.14), with derivatives, into (14.9) yields:

mTi, +kTk, =F (14.18)

Equation (14.18) still contains (a + b) degrees of freedom, so premultiplication

by T is required to reduce to (b) degrees of freedom and to return symmetry
to the reduced mass and stiffhess matrices:

(T'mT)%, +(T'kT)z, =T'F (14.19)
Rewriting in a more compact form:
m;, 7, +k,z, =F, (14.20)

Equation (14.20) is the final reduced equation of motion which can be solved
for the displacements of type b. Displacements of type a (assuming static
equilibrium) can then be solved for using (14.13).

k;, can be shown to be the same as that derived in the static condensation
Section 13.4.1, (13.39):

L T - kaa kab Tab
K, =[1] 11[,(“ kbj[l}
T
=[(T;,kaa +k,, ) (T;kab+kbb)]{ Ib]

=T,k,T, +k, T, +T k, +k;,

aa “ab

=k, k'k, kk, -k, kI'k, -k k'k, +k,

ba ™ aa Taa Taa  ab ba"aa’tab ba"aa

=k, —k, k 'k (14.21)

ba"taa T ab



Chapter 14  Finite Elements: Dynamics 361

14.5.2 Two-Element Cantilever Eigenvalues Closed Form Solution Using
Guyan Reduction

Repeating the rearranged global stiffness matrix from the static run, (13.45):

82 4
11 1

2 4 6 6

2 2

k=pr|! 1 b 1 (14.22)

6 24 -12

T 7T T

6 -6 -12 12

T T P T

Breaking out and identifying the four submatrices of dependent (a) and
independent (b) degrees of freedom:

8 2 0 -
kaa =E kab =EI_ 6
12 4 , ’l6 -6
(14.23a-d)
« _EI[0 6 o _EIf24 12
12| -6 -6 PUPR-12 12
Finding the inverse of k,, :
2 -
K= (14.24)
14EI-1 4|
kk, =—L 0 ® . (1425)
w7 141024 -18 '

' EI [ 144 -108
k. k'k, =— 14.26
T 4P [—108 144} (14.26)



362 Vibration Simulation Using MATLAB and ANSYS

*

k;, =k, —k,k'k

ba“taa T ab

_ EI 336 -168 144 -108
T 140 ||-168 168 | |-108 144
_EBI[192 —60
T 14| -60 24
(14.27)
The transformation matrix T is given by:
_i i-
141 141
T -k 'k -24 18
T: ab = aa "ab = — .
[1} { 1 } 141 141 (14.28)
1 0
L. 0 1_

The mass matrix now needs to be rearranged into “a” and “b” submatrices and
then transformed to my, :

312ml 0 54ml  —13ml?
1 0 gml®  13ml> -3ml’

m, = — (14.29)
420 54ml  13ml* 156ml —22ml*
-13ml* 3mf -22ml* 4ml’
Rearranging rows 1 to 3,2 to 1, 3 to 4 and 4 to 2:
0 8ml° 13ml* -3mP
1 |-13m* —3ml® -22ml* 4ml’
mo=—| 3m m _ (14.30)
420| 312ml 0 54mi  -13ml

54ml  13ml> 156ml —22ml*

Rearranging columns 1 to 3,2 to 1,3 to 4 and 4 to 2:



Chapter 14  Finite Elements: Dynamics : 363

g 3P 0 131
m | =3 4P 1312 221

m =— 14.31
¢ 4201 0 -131F 3121 541 ( )
137 221 541 1561
Separating into submatrices:
m’[8 -3 mi’[ 0 13
m, =—— m, =—-
420|-3 4 420 ~13 22
(14.32a-d)
m?[0 -13 ml [312 54
mba = m, =—
420013 =22 420 54 156
Calculating my, :
m;,, =T'mT (14.33)
Carrying out the multiplications:
1528 241
. 1715 1372
m, =ml 14.34
® 241 471 (1434
1372 1715

14.6 Eigenvalues of Reduced Equations for Two-Element Cantilever,
State Space Form

The second order reduced equation of motion is shown in (14.35), (14.36),
using the 2x2 stiffness matrix from static condensation, (13.50). We will now
generate the state space form of the second order reduced equations. It is
useful to see how to convert a second order set of differential equations with a
filled (not diagonal) mass matrix to state space form. Once we have the
equations of motion in state space form, we will use a symbolic algebra
program to solve for the eigenvalues.

m, Z, +k,z, =[0] ' (14.35)



364  Vibration Simulation Using MATLAB and ANSYS

1528 241
s 1270 |3 192 60 0

i 1715 1372 || 2 | EL ot | 2 (14.36)
241 471 || %, | 14P°|-60 24 ||z,| |0
1372 1715

z,, and z,, are the first two reduced degrees of freedom, the displacements of
nodes 2 and 3.

Normally, we would solve each of the equations of motion for the highest
derivative and then convert to state space form, but we cannot do that here
because the mass matrix is filled, meaning that there is more than one second
derivative in each equation. To get around this problem, we will first convert
the equation to state space form. We will then take the inverse of the mass
matrix and premultiply, leaving only the identity matrix to multiply with the
derivative vector.

Converting to state space form, where x, and x, are displacement and
velocity of node 2 and x, and x, are the displacement and velocity of node 3,

respectively:
m,x +k,x =[0] (14.37)
1 0 0 S| 0 0]
1528ml 241ml || % 192EI —60EI X, 0
1715 1372 || %, 141 141 X _|0
0 0 0 | x, 0 0 0 —1|x, 0
241ml 471ml || %, —60EI 24E1 %, 0
1372 1715 L 141 141° i
(14.38)

Note that the “1” terms are on the diagonal in the mass matrix and the “~1”
terms are off diagonal in the stiffness matrix. Taking the inverse of m :



Chapter 14

Finite Elements: Dynamics

365

-1
ss

1 0 0 0
263760 —168700
| 205367ml 205367ml
) 0 1 0
-168700 855680
205367ml 205367ml |

Premultiplying the equation of motion by m_':

0 -1 0
1 00 0fx 4340280EI —~1419600EI
0 10 0fx, L | 205367ml* 205367ml*
0 0 1 0fx, 0 0 0
000 1] x, —5980800EI 2189880EI

| 205367ml* 205367ml*

Rewriting without the identity matrix:

i 0 -1 0 0]
X, 4340280EI ~1419600EI
X, N 205367ml* 205367ml*
X, 0 0 0 -1
X, ~5980800EI 2189880EI

| 205367ml* 205367ml*

Converting to standard state space form, X = Ax+Bu:

0 1 0 0
—4340280EI 1419600EI
205367ml* 205367ml*

0 0 0 1
5980800EI —2189880EI
205367ml* 205367ml*

Using a symbolic algebra program to solve for the eigenvalues:

[T e B e N

(14.39)

o o o <o

(14.40)

(14.41)

(14.42)



366 Vibration Simulation Using MATLAB and ANSYS

(14.43)

21 ) 205367 ml?

¢ _[1}[ 2 )J43127070\/E1m(3887i20«/34178)
L2 =

14.7 MATLAB Code cant_2el guyan.m —
Two-element Cantilever Eigenvalues/Eigenvectors

14.7.1 Code Description

The MATLAB code cant_2el guyan.m solves for the eigenvalues and
eigenvectors of a two-element steel cantilever with dimensions of 0.2 x 2 x
20mm. The code does the following, where each time MATLAB calculates a
result it is compared to the hand-calculated result:

1) builds mass and stiffness matrices element by element

2) deletes degrees of freedom associated with constrained left-
hand end

3) reorders the matrices and performs Guyan reduction
4) converts to state space form

5) calculates eigenvalues/eigenvectors

The code for cant_2el guyan.m is not listed as similar code is used in
cantbeam_guyan.m, which is listed below.

14.7.2 Code Results

Substituting for E, I, m and 1 in (14.43) as shown in the code results in
eigenvalues of 398.55 and 2521.1 Hz. The first two eigenvalues for a
10-element model using ANSYS (following section) are calculated to be
397.86 and 2493.2 Hz, giving differences between the two-element and 10-
element beams of 0.17% and +1.11%, respectively. The differences between
the two-element and theoretical values are +0.1697% and +0.0095%,
respectively. Archer’s consistent mass paper stated that in order to calculate
accurate eigenvalues using consistent mass we only needed one more element
than the number of accurate modes desired. In this case we found the
frequency of the first mode very accurately using only two elements, and the
second mode was only off by 1.11%, even with the errors inherent in the
Guyan reduction method.



Chapter 14  Finite Elements: Dynamics 367

14.8 MATLAB Code cantbeam_guyan.m —
User-Defined Cantilever Eigenvalues/Eigenvectors

This MATLAB code solves for the eigenvalues and eigenvectors of a
cantilever with user-defined dimensions, material properties, number of
elements and number of mode shapes to plot. The code is similar to that in
cant_2el_guyan.m except that Guyan reduction is an option for this code. If
Guyan reduction is chosen, all rotations are reduced, leaving only translations
as master degrees of freedom. The code is listed below, but is not broken
down and commented because the comments integrated with the code should
be sufficient.

In order to compare results with the ANSYS run below, a 10-element beam
with the following properties is used: width = 2mm, thickness = 0.2, length =
20mm, modulus = 190e® mN/mm? , density = 7.83¢™* Kg/mm’ .

14.9 ANSYS Code cantbeam.inp, Code Description

The ANSYS code solves for the eigenvalues and eigenvectors of the same
beam as cantbeam_guyan.m.

14.10 MATLAB cantbeam_guyan.m / ANSYS cantbeam.inp Results
Summary

14.10.1 10-Element Beam Frequency Comparison

The Table 14.1 shows the eigenvalues from the 10-element ANSYS and
MATLAB runs, both with Guyan reduction, along with theoretical values
calculated using the MATLAB code cantbeam_ss_freq craig.m (Chang 1969).
The errors for the first five modes are quite small, with the maximum error
(for the ninth mode) being only 6.5%.



368  Vibration Simulation Using MATLAB and ANSYS
Mode MATLAB ANSYS Theoretical Percent Error,
No. Cantbeam_ Cantbeam.in Cantbeam_guyan.m
guyan.m P and Theoretical

1 397.88 397.86 397.874572279 -0.0001
2 2493.6 2493.2 2493.437382146 -0.0051
3 6984.5 6982.2 6981.696870181 -0.0408

4 13703 13696 13681.339375292 -0.1646
5 22727 22705 22616.234284744 -0.4887
6 34194 34145 33784.737867762 -1.2113
7 48420 48234 47186.94828572 -2.6126
8 65831 65657 62822.86012645 -4.7893
9 85987 85697 80692.473674351 -6.5619

10 104570 101392 100795.788914948 -3.7445

Table 14.1: 10-element beam frequency comparisons.

14.10.2 20-Element Beam Mode Shape Plots, Modes 1 to §

Instead of plotting the mode shapes for the 10-element model,
20-element model to give better resolution and smoother plots.

we will use a
The first five

mode shape plots are shown in Figures 14.2 through 14.6 below. Note that for
the third and fifth modes the displacements of the middle node are quite small
relative to the maximum 1.0. In other words, there is a “node” of the mode
near the midpoint of the beam. This meaning for “node” of a mode is not that
of a finite element “node,” but is a location along the beam where
displacement goes to zero for that mode of vibration.

Normalized Y-Displacement

Cantilever Beam, Mode 1: 398 hz

1.5l T T T T T T i T
1 | 1 ! 1 1 1 | |
i | 1 1 | : ] 1 | 1
1 ! ! | ' ) ' 1 1
) S VS ) IO
| | | | | | | ' '
| | 1 i | | | | |
1 | 1 [ | | | | |
131 S ) A (P I D B
: 1 | i I ! | ! | |
1 . | : ; l 1
| ' | | i ] i 1 1
| | | \ | \ | i |
0B—C—p~p=g — T - R e e B E e B
| i ‘@\@é | | | | |
' | | - ' 1 | |
. | : »T\)\é\@\ | | |
05F--a-- r-———---1 ~7|7**$\@~5**ﬂ***r——~
| i | | i g |
| i | | | | | '
| | | | | | | i
B e It S B B S B e
1 1 1 i 1 1 1 | |
! 1 | 1 1 1 1 | | 1
i ! [ ! | ! l ¢ | 1
_1.5\ 1 . 1 o | 1
0 2 4 6 8 10 12 14 16 18

Distance From Built-in End

Figure 14.2: Cantilever beam first mode.



Chapter 14  Finite Elements: Dynamics

1.5

o
)

Normalized Y-Displacement
=4
¢ |
]
1
|
1
|
I
I

0.5
| 1 ~.
| | 1 e
| | | | I

R T T R O

! ! ! ! !
i I i | |
1 I I i |

45 I 1 b i L

0 2 4 6 8 10
Distance From Built-In End
Figure 14.3: Cantilever beam second mode.
Cantilever Beam, Mode 3: 6982 hz
1.5 - - —

T T T —T
|
|
I
b

Normalized Y-Displacement

Distance From Built-In End

Figure 14.4: Cantilever beam third mode. Note “node” near the beam middle.

We are focusing on “nodes” located near the middle of the beam because in
the next chapter we will solve for the frequency responses of a cantilever with
a force at the center and output displacement at the tip. We will see that
modes with small eigenvector entries for input or output (or both) degrees of
freedom are able to be removed from the model, as they contribute little to the
input or output of the system.



370  Vibration Simulation Using MATLAB and ANSYS

Normalized Y-Displacement

Normalized Y-Displacement

o
(<)

Cantilever Beam, Mode 4: 13682 hz

L T

T
|

| 1 | |
i

t
|
1
i

8 10 12
Distance From Built-In End

Figure 14.5: Cantilever beam fourth mode.

Cantilever Beam, Mode 5: 22621 hz

S S S A S s B

T
|
|
i

I

!

|

i

6 8 10 12
Distance From Built-In End

Figure 14.6: Cantilever beam fifth mode. Note the “node” near the midpoint of the beam,

and two additional “nodes” to the left and right of the midpoint.

The 10 eigenvectors from the 10-element cantbeam_guyan.m, normalized to
unity, are shown in Table 14.2. The displacement entry for the built-in left-
hand end of the beam is not shown, the 10 rows represent the nodes from left
to right, starting with the second node from the end.



Chapter 14  Finite Elements: Dynamics 371

Mode: 1 2 3 4 5 6 7 8 9 10

-0.0168 -0.0926 -0.2280 0.3841 -0.5331 -0.6485 0.7129 0.7310 0.7418 -0.6239
-0.0639 -0.3010 -0.6042 0.7519 -0.6535 -0.3274 -0.1055 -0.4942 -0.7714 0.7719
-0.1365 -0.5261 -0.7558 0.4324 0.2109 0.6574 -0.5480 0.0107 0.6458 -0.9023
-0.2299 -0.6834 -0.5256 -0.3153 0.6906 0.1048 0.6100 0.4831 -0.3565 0.9797
-0.3395 -0.7136 -0.0195 -0.7053 -0.0028 -0.6931 -0.0029 -0.6863 -0.0222 -1.0000
-0.4611 -0.5894 0.4737 -0.3249 -0.6948 0.1125 -0.6070 04771 0.3953 0.9618
-0.5909 -0.3170 0.6571 0.3971 -0.2215 0.6607 0.5534 0.0186 -0.6692 -0.8674
-0.7255 0.0701 0.3945 0.6411 0.5965 -0.3025 0.1160 -0.5089 0.7788 0.7247
-0.8624 0.5238 -0.2288 0.0504 0.2884 -0.4706 -0.5885 0.6466 -0.6636 -0.5252
-1.0000 1.0000 -1.0000 -1.0000 -1.0000 1.0000 1.0000 -1.0000 1.0000 0.7913

Table 14.2: 10-element beam eigenvectors normalized to unity. Note small values for
third, fifth, seventh and ninth mode displacements for midpoint node, in bold type.

The presence of a “node” of a mode can be seen numerically for the 10-
element MATLAB model by looking at the fifth row (midpoint of beam) of
the eigenvector listing in Table 14.2 and noting the small values for the third,
fifth, seventh and ninth modes, highlighted in bold type. Getting a good
mental picture of the relationship between the plotted mode shape and the
eigenvector listing is quite useful. We will see in the next chapter that the
small value of node displacements for certain modes of vibration will mean
that for certain transfer functions the modes are less important to include in the
reduced (smaller number of states used) state space model, and therefore, can
be eliminated.

For eigenvector comparison with the ANSYS results, which are normalized
with respect to mass instead of unity, the first two eigenvectors for the 10-
element MATLAB beam model, are shown below. Compare with the “UZ”
columns in the ANSYS listing below.

42387 -23.4098
14.1402 -76.0842
34.4892 -132.9666
58.0918 -172.7285
85.7975 -180.3585
116.5287 -148.9709
149.3145 -80.1210
183.3282 17.7069
217.9284 132.3727
252.7000 252.7326

Table 14.3: MATLAB 10-element beam model, first and second eigenvectors normalized
with respect to mass.



372  Vibration Simulation Using MATLAB and ANSYS

A listing for the first two modes from the ANSYS code cantbeam.eig is
shown below. The listing displays the title, resonant frequency (eigenvalue)
and a listing of eigenvector entries for each degree of freedom. Even though
we used Guyan reduction on the ANSYS model, ANSYS back-calculates the
eigenvector values of the reduced dof’s so there are eigenvector values for
both the UZ and ROTY degrees of freedom below. Since we constrained all
the degrees of freedom except the displacement in the z-direction and rotation
about the y axis, all other degree of freedom entries for the eigenvectors are
Zero.

*DO LOOP ON PARAMETER= | FROM 1.0000 TO 10.000 BY 1.0000

USE LOAD STEP | SUBSTEP 1 FOR LOAD CASE 0
SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION=
! TIME/FREQUENCY= 397.86
TITLE= cantbeam.inp, 0.2 thick x 2 wide x 20mm long steel cantilever beam, 10
PRINT DOF NODAL SOLUTION PER NODE
*+44% POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1
FREQ= 397.86 LOAD CASE= ¢

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX uy Uz ROTX ROTY ROTZ
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0000 4.2385 0.0000 -4.1366  0.0000
3 0.0000 0.0000 16.140 0.0000 -7.6631  0.0000
4 0.0000 0.0000 34.488 0.0000 -10.586  0.0000
5 0.0000 0.0000 58.090 0.0000 -12.920 0.0000
6 0.0000 0.0000 85.796 0.0000 -14.695 0.0000
7 0.0000 0.0000 116.53 0.0000 -15.954 0.0000
8 0.0000 0.0000 149.31 0.0000 -16.761  0.0000
9 0.0000 0.0000 183.32 0.0000 -17.198  0.0000
10 0.0000 0.0000 217.92 0.0000 -17.366  0.0000
11 0.0000 0.0000 252.70 0.0000 -17.396  0.0000

MAXIMUM ABSOLUTE VALUES

NODE 0 0 11 0 I 0
VALUE 0.0000 0.0000 252.70 0.0000 -17.396 0.0000
*ENDDO INDEX=1

*¥**¥** POST1 NODAL DEGREE OF FREEDOM LISTING *#**#*

LOAD STEP= 1 SUBSTEP= 2




Chapter 14  Finite Elements: Dynamics 373

FREQ= 24932 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX 19)'¢ Uz ROTX ROTY ROTZ
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 -23.405 0.0000 21.188  0.0000
3 0.0000 0.0000 -76.071 0.0000 29354  0.0000
4 0.0000 0.0000 -132.95 0.0000 25705 0.0000
5 0.0000 0.0000 -172.71 0.0000 12.776 . 0.0000
6 0.0000 0.0000 -180.34 0.0000 -5.7217  0.0000
7 0.0000 0.0000 -148.96 0.0000 -25.506  0.0000
8 0.0000 0.0000 -80.124 0.0000 -42.575 0.0000
9 0.0000 0.0000 17.689 0.0000 -54.169 0.0000
10 0.0000 0.0000 132.34 0.0000 -59.449  0.0000
11 0.0000 0.0000 252.69 0.0000 -60.537 0.0000

MAXIMUM ABSOLUTE VALUES

NODE

0 0 11 0 11 "0

VALUE 0.0000 0.0000 252.69 0.0000 -60.537 0.0000

14.11 MATLAB Code cantbeam_guyan.m Listing

%
%
%
%
%
%

%o

echo off

cantbeam_guyan.m cantilever beam finite element program,

selectable number of elements. Solves for eigenvalues and

eigenvectors of a cantilever with user-defined dimensions,

material properties, number of elements and number of mode shapes

to plot. Guyan reduction is an option. A 10 element beam is used

as an example. Default beam is 2mm wide by 20mm long by 0.2mm thick.

clf;
clear all;

inp = input('Input "1" to enter beam dimensions, "Enter” to use default ... ');

if (isempty(inp))
inp =0;

else

end

if inp==
wbeam = 2.0
tbeam =0.2
[beam = 20.0
E = 190e6

density = 7.83e-6
else

input size of beam and material




374  Vibration Simulation Using MATLAB and ANSYS

%

%

wbeam = input('Input width of beam, default 2mm, ... ');

if (isempty(wbeam))

wbeam = 2.0;
else
end

tbeam = input('Input thickness of beam, default 0.2mm, ... ");

if (isempty(tbeam))
tbeam = 0.2;

else

end

Ibeam = input('Input length of beam, default 20mm, ... ');

if (isempty(lbeam))
Ibeam = 20.0;

else

end

E = input('Input modulus of material, mN/mm”2, default stainless steel 190¢6 ... *);

if (isempty(E))

E = 190e6;
clse
end

density = input('Input density of material, Kg/mm~3, default stainless steel 7.83¢-6 ...

if (isempty(density))
density = 7.83e-6;
else
end
end

input number of elements

num_elements = input('Input number of elements for beam, minimum 2, default 10 ...

if (isempty(num_eleménfs))
num_elements = 10;

else

end

define whether or not to do Guyan Reduction

guyan = input('enter "1" to do Guyan elimination of rotations, ...
"enter” to not do Guyan ... ');

if (isempty(guyan))




Chapter 14  Finite Elements: Dynamics

375

%

%

%

%

%
%
%

guyan = 0;
else
end
if guyan==0
num_plot_max =2*num_elements;
num_plot_default = num_elements; BRI
else
num_plot_max = num_elements;
num_plot_default = num_elements;
end

num_plot = input(['enter the number of modes to plot, max’, ...

num2str(num_plot_max),', default ',num2str(num_plot_default),’ ... );

if (isempty(num_plot))
num plot=9;

else

end

define length of each element, uniform lengths

1 = Ibeam/num_elements;

define length vector for plotting, right-to-left numbering

Ivec = O:1:Ibeam;

define the node numbers

n=1:num_elements+1;

number the nodes for the elements

nodel = 1:num_elements;

node2 = 2:num_elements+1;

size the stiffness and mass matrices to have 2 times the number of nodes
to allow for translation and rotation dof's for each node, including built-
inend

max_nodel = max(nodel);

max_node2 = max(node2);

max_node_used = max([max_nodel max_node2]);

mnu = max_node_used;




376 Vibration Simulation Using MATLAB and ANSYS

k = zeros(2*mnu);

m = zeros(2*mnu);

% now build up the global stiffness and consistent mass matrices, element by element

% calculate I, area and mass per unit length of beam
1= wbeam*tbeam”3/12;
area = wbeam*tbeam;
mpl = density*area;
for i=l:num_elements

dofl = 2*nodel (i)-1;
dof2 = 2*nodel (i);
dof3 = 2*node2(i)-1;
dof4 = 2*node2(i);

k(dof1,dof1) = k(dof1,dofl J+(12*¥E*I/1*3);
k(dof2,dof1) = k(dof2,dof1 +{(6*E*I/1°2);

k(dof3,dof1) = k(dof3,dof1 )+(-12*E*I1"3);
k(dof4,dof1) = k(dof4,dof1 JH(6*EXV112); £

k(dof1,dof2) = k(dof1,dof2+(6*E*1/12);
k(dof2,dof2) = k(dof2,dof2+(4*E*1/t);
k(dof3,dof2) = k(dof3,dof2) H-6*E*1/1"2);
k(dof4,dof2) = k(dof4,dof2)+2*E*I/1);

k(dof1,dof3) = k(dof1,dof3 }+(-12*E*[/1"3);
k(dof2,dof3) = k(dof2,dof3)}+(-6*E*V/1°2);
k(dof3,dof3) = k(dof3,dof3}+(12*E*I/1"3);
k(dof4,dof3) = k(dof4,dof3)+(-6*E*I/1"2);

k(dof1,dof4) = k(dofl,dofd)H6*E*1/12);
k(dof2,dof4) = k(dof2,dof4)+2*E*1/1);
k(dof3,dof4) = k(dof3,dofa)H-6¥E*1/1"2);
k(dof4,dof4) = k(dof4,dofd)+4*E*V/I);

m(dofl,dofl) = m(dofl,dofl }+(mpl/420)*(156*1);
m(dof2,dof1) = m(dof2,dof1 }+(mpl/420)*(22*1"2);
m(dof3,dofl) = m(dof3,dof 1 ) +(mpl/420)*(54*1);
m(dof4,dof1) = m(dof4,dof]1 ) +(mpl/420)*(-13*1"2);

m(dofl,dof2) = m(dofl,dof2)+(mpl/420)*(22*1"2);
m(dof2,dof2) = m(dof2,dof2)+(mpl/420)*(4*1"3);

m(dof3,dof2) = m(dof3,dof2}+(mpl/420)*(13*1"2);
m(dof4,dof2) = m(dof4,dof2)+(mpl/420)*(-3*1"3);

m(dofl,dof3) = m(dofl,dof3)+(mpl/420)*(54*1),
m(dof2,dof3) = m(dof2,dof3 ) +(mpl/420)*(13*1"2);




Chapter 14  Finite Elements: Dynamics 377

%
%
%
%

%
%

%

m(dof3,dof3) = m(dof3,dof3)+(mpl/420)*(156*1);
m(dof4,dof3) = m(dofd,dof3)+(mpl/420)*(-22*1"2);

m(dof1,dof4) = m(dof1,dof4)+(mpl/420)*(-13*1*2);
m(dof2,dof4) = m(dof2,dof4)+(mpl/420)*(-3*1"3); .
m(dof3,dof4) = m(dof3,dofd)+(mpl/420Y*(-22*1*2);
m(dot4,dof4) = m(dofd,dof4)+(mpl/420)*(4*1"3);

end

now that stiffness and mass matrices are defined for all dof's, including
constrained dof's, need to delete rows and columns of the matrices that
correspond to constrained dof's, in the left-to-right case, the first two

rows and columns

k(1:2,)=1[]; % translation/rotation of node 1
k(G 1:2)=];

m(1:2,:))=1];
m(;,1:2) =[];

if guyan ==

Guyan Reduction - reduce out the rotation dof's, leaving displacement dof's
re-order the matrices

re-order the columns of k

_ kr = zeros(2*(mnu-1));

krr = zeros(2*(mnu-1));

% rearrange columns, rotation and then displacement dof's

mkrcolent = 0;

for mkcolcnt = 2:2:2*(mnu-1) .
mkrcolent = mkrcolent + 1;
kr(:,mkrcolent) = k(:,mkcolcnt);
mr(:,mkrcolcnt) = m(:,mkcolent);

end

mkrcolent = num_elements;

for mkcolent = 1:2:2*(mnu-1)
mkrcolent = mkreolent + 1
kr(:,mkrcolent) = k(:,mkcolcnt);

mr(:,mkrcolent) = m(:,mkcolcnt);




378 Vibration Simulation Using MATLAB and ANSYS

end
% rearrange rows, rotation and then displacement dof's
mkrrowent = 0;
for mkrowent = 2:2:2*(mnu-1)
mkrrowcnt = mkrrowent + 1;
krr(mkrrowent,:) = kr(mkrowcent,:);
mrr(mkrrowent,;) = mr(mkrowcnt,:);
end
mkrrowent = num_elements;
for mkrowcent = 1:2:2%(mnu-1)
mkrrowent = mkrrowent + 1;
krr(mkrrowent,:) = kr(mkrowcnt,:);
mrr(mkrrowent,:) = mr(mkrowent,:);
end
% define sub-matrices and transformation matrix T
kaa = krr(1:num_elements, I :num_elements);
kab = krr(1:num_elements,num_elements+1:2*num_elements);

T = [-inv(kaa)*kab .
eye(num_elements,num_elements)]

% calculate reduced mass and stiffness matrices
kbb = T*krr*T
mbb = T*mrr*T
else
kbb =k;
mbb = m;
end

% define the number of dof for state-space version, 2 times dof left after
% removing constrained dof's




Chapter 14  Finite Elements: Dynamics

379

%

%

%
%

%

%
%

%

[dof,dof] = size(kbb);

define the sizes of mass and stiffness matrices for state-space

ssdof = 2*dof;

aud = zeros(ssdof); % creates a ssdof x ssdof null matﬁx
divide the negative of the stiffness matrix by the mass matrix

ksm = inv(mbb)*(-kbb);

now expand to state space size
fill out unit values in mass and stiffness matrices

for row = 1:2:ssdof
aud(row,row+1) =1,
end
fill out mass and stiffness terms from m and k
for row = 2:2:ssdof
for col =2:2:ssdof
aud(row,col-1) = ksm(row/2,col/2);
end

end

calculate the eigenvalues/eigenvectors of the undamped matrix for plotting

and for calculating the damping matrix ¢
[evecl,evalu] = eig(aud);
evalud = diag(evalu);
evaludhz = evalud/(2*pi);
num_modes = length(evalud)/2;
now reorder the eigenvalues and eigenvectors from low to high freq
[evalorder,indexhz] = sort(abs((evalud)));
for cnt = I:length(evalud)
eval(cnt,1) = evalud(indexhz(cnt));
evalhzr(cnt,1) = round(evaludhz(indexhz(cnt)));

evec(:,cnt) = evecl(:,indexhz(cnt));




380 Vibration Simulation Using MATLAB and ANSYS

%

%
%

end
now check for any imaginary eigenvectors and convert to real
for cnt = l:length(evalud)
if (imag(evec(1,cnt)) O imag(evec(3,cnt)) O imag(evec(5,cnt))) ~= 0
evec(:,cnt) = imag(evec(:,cnt));
else
end
end
if guyan ==

now separate the displacement and rotations in the eigenvectors
for plotting mode shapes

evec_disp = zeros(ceil(dof/2),ssdof);
rownew = 0;
for row = 1:4:ssdof
rownew = rownew+1;
evec_disp(rownew,:) = evec(row,:);
end
evec_rotation = zeros(ceil(dof/2),ssdof);
rownew = 0;
for row = 3:4:ssdof
rownew = rownew+1;
evec_rotation(rownew,:) = evec(row,:);
end
else
evec_disp = zeros(ceil(dof/4),ssdof);
rownew = 0;
for row = 1:2:ssdof

rownew = rownew+1;




Chapter 14  Finite Elements: Dynamics » 381

%

%

%

%

evec_disp(rownew,:) = evec(row,:);
end
end
normalize the displacement eigenvectors wrt one for plotting
for col = 1:ssdof
evec_disp(:,col) = evec_disp(:,col)/max(abs(real(evec_disp(:,col))));
if evec_disp(floor(dof/2),col) >= 0
evec_disp(:,col) = -evec_disp(:,col);

else
end

end
list eigenvalues, hz
format long e
evaludhz_list = sort(evaludhz(1:2:2*num_modes))
format short
list displacement (not velocity) eigenvectors
evec_disp(:,1:2:2*num_plot)
if guyan==10
plot mode shapes
for mode_cnt = 1:num_plot
evec_cnt = 2*mode_cnt -1;
plot(lvec,[0; evec_disp(:,evec_cnt)],'’ko-")
title(['Cantilever Beam, Mode |, ...
num2str(mode_cnt),": ',num2str(abs(evalhzr(evec_cnt))),' hz'l);
xlabel('Distance From Built-In End")
ylabel('Normalized Y-Displacement')
axis([0 lbeam -1.5 1.5])
grid on
disp('execution paused to display figure, "enter" to continue'); pause

end

else




382 Vibration Simulation Using MATLAB and ANSYS

%

%

%
%

%

%

plot mode shapes, Guyan Reduced
for mode_cnt = 1:num_plot
evec_cnt = 2*mode_cnt -1;
plot(lvec,[0; evec_disp(:,evec_cnt)],’ko-")
title(['Cantilever Beam, Mode ', ...
num2str(mode_cnt),": ,;num2str(abs(evalhzr(evec_cnt})),' hz']);
xlabel('Distance From Built-In End')
ylabel('Normalized Y-Displacement')
axis([0 lbeam -1.5 1.57)
grid on
disp('execution paused to display figure, "enter” to continue'); pause
end
end

normalization with respect to mass on a filled (not diagonal) mass matrix

calculate the displacement (displacement and rotation) eigenvectors
to be used for the modal model eigenvectors

xm = zeros(dof);
col=0;

for mode = 1:2:ssdof

col=col +1;
row = 0;
for ndof = 1:2:ssdof

row =row + 1;
xm(row,col) = evec(ndof,mode);
end
end
normalize with respect to mass
for mode = 1:dof
xn(:,;mode) = xm(:,mode)/sqrt(xm(:,mode)*mbb*xm(:,mode));
end

calculate the normalized mass and stiffness matrices for checking




Chapter 14  Finite Elements: Dynamics

%

mm = xn"*mbb*xn;

km = xn"*kbb*xn;

check that the sqrt of diagonal elements of km are eigenvalues

p = (diag(km)).~0.5;
row = 0;
for cnt = 1:2:ssdof
row =row + 1;
evalrad(row) = abs((eval(cnt)));
end
[p evalrad'}/(2*pi)
evalhz = evalrad/(2*pi);
semilogy(evalhz)
title('Resonant Frequencies, Hz')
xlabel('Mode Number')

ylabel('Frequency, hz')
grid

14.12 ANSYS Code cantbeam.inp Listing

/title, cantbeam.inp, 0.2 thick x 2 wide x 20mm long steel cantilever beam, 10 elements

fprep7

et,1,4 ! element type for beam
! steel

ex,1,190e6 ! mN/mm”2
dens,1,7.83e-6 ! kg/mm"3
nuxy,1,.293

! real value to define beam characteristics

1,1,0.4,0.1333,0.0013333,0.2,2

! define plotting characteristics

/view,1,1,-

1,1 ! is0 view

/angle, 1,-60 !iso view

/pnum,mat,

,1 ! color by material

disp(‘execution paused to display figure, "enter” to continue'); pause

! area, Izz, lyy, TKz, TKy



384 Vibration Simulation Using MATLAB and ANSYS

/num,1 ! numbers off
/type,1,0 ! hidden plot
/pbc,all, 1 ! show all boundary conditions

csys,0 ! define global coordinate system
Y
! nodes

n,1,0,0,0 ! left-hand node
n,11,20,0,0 ! right-hand node

fill,1,11 }interior nodes
nplo
! elements

type,1

mat,1

real, 1

el,2
egen,10,1,-1

! constrain left-hand end
d,1,all,0 ! constrain node 1, all dof's

! constrain all but uz and roty for all other nodes to allow only those dof's

! this will give 10 nodes, node 2 through node 11, each with 2 dof, giving a total of 20 dof
! can calculate a maximum of 20 eigenvalues if don't use Guyan reduction to reduce size of
! eigenvalue problem, maximum of 10 eigenvalues if use Guyan reduction

nall
nsel,s,node,,2,11
d,all,ux

d,all,uy
d,all,rotx
d,all,rotz

allsel
nplo
eplo

Pk rbbbltbakab bbbt eioenyalue run HFEEREOSR R R R R R

fini ! fini just in case not in begin
/solu ! enters the solution processor, needs to be here to do editing below
allsel ! default selects all items of specified entity type, typically nodes, elements

nsel,s,node,,2,11
m,all,uz

antype,modal,new




Chapter 14  Finite Elements: Dynamics : 385

modopt,reduc,10 ! method - reduced Houscholder, number of modes to extract
expass,off ! key = off, no expansion pass, key = on, do expansion

mxpand, 10,,,no0 ! nummodes to expand

total, 10,1 ! total masters, 10 to be used, exclude rotational dofs

allsel

solve ! starts the solution of one load step of a solution sequence, modal here
fini

! plot first mode
/postl
set,1,1

pldi, 1

Bk output frequencies
/output,cantbeam, frq ! write out frequency list to ascii file .frq

set,list

/output,term ! returns output to terminal
! 3 ok 3k 3k ok ok ok o ok A ok ok oK ok ok Output eigenvectors Aok ook ook de ok ok ok ok ok ok ok ok

! define nodes for output: forces applied or output displacements

nall
nsel,s,node,,11 ! cantilever tip

/output,cantbeam,eig ! write out eigenvectors to ascii file .eig

*do,i,1,10
set,,i
prdisp
*enddo

/output,term
e ok 2be sk ok ok s ok ok e ok e o e fe o ke plot mOdeS ok 3k o ok sk o ok e ok ok e ok ke ok sk ok ke ok

! pldi plots

/show,cantbeam,grp,0
allsel

fview,1,,-1,, ! side view for plotting
/angle,1,0

/auto

*do,i,1,10




386 Vibration Simulation Using MATLAB and ANSYS

set,1,i
pldi
*enddo

/show,term

Problem

P14.1 Modify the cantbeam_guyan.m code to allow variable material and
geometry properties along the beam by converting the following scalar
quantities into user defined vector quantities: wbeam, tbeam, E, density.

Run the modified code for a 20mm long beam with the twice the default values
for the left half of the beam and the default parameters for the right-hand side.
Plot eigenvalues in hz versus mode number. Plot the first five mode shapes.




CHAPTER 15

SISO STATE SPACE MATLAB MODEL FROM ANSYS
MODEL

15.1 Introduction F

This chapter will develop a SISO state space MATLAB model from an
ANSYS cantilever beam model. The cantilever is admittedly a trivial
example, but like the tdof model used in the first part of the book, will serve as
a good model to develop a fundamental understanding of the process. As we
are going through the simple cantilever example we should be thinking about
applying the process to a model of an actual device, for example a complete
model of a disk drive, with hundreds of thousands of nodes and up to hundreds
of modes in the frequency range of interest. Our objective for the model will
be to provide the smallest MATLAB state space model that accurately
represents the pertinent dynamics.

The model cantilever is shown in Figure 15.1. It is a 2mm wide by 0.075mm
thick by 20mm long steel beam. The coordinate system is indicated on the
figure. A z direction force is applied at the midpoint of the beam and z
displacement at the tip is the output. Only x-z plane motion is allowed; all
other degrees of freedom are constrained.

L |
ZI R
N

Figure 15.1: Cantilever beam with forcing function at midpoint.

Beam Midpoint

We will begin by analyzing the major issues all finite element analysts face
when setting up a model: defining the number of elements to use and
calculating the effects of Guyan reduction, if used. We will analyze the
cantilever with different numbers of elements. We will also analyze with and



388 Vibration Simulation Using MATLAB and ANSYS

without Guyan reduction and compare the resulting resonant frequencies with
theoretical results. Knowing the frequency range of interest for the model,
typically defined by servo bandwidth considerations, we will define a model
(number of elements) that accurately predicts eigenvalues in the range of
interest. In this theoretical example we have the luxury of knowing the exact
values for the eigenvalues. However, in real life problems, we know that a
finite element model is accurate only if we build another model with finer
resolution and compare results, and/or have good experimental mode shape
data with which to compare.

While Guyan reduction prior to conducting an eigenvalue analysis has been in
the main replaced by the Block Lanczos eigenvalue extraction method, Guyan
reduction will be presented because it is still used in creating “superelements”
for large models (which are then solved using Block Lanczos) and is also used
in correlating finite element and experimental model models.

For some problems, the time to perform frequency response calculations using
Block Lanczos is of the same order of time as the eigenvalue extraction, which
makes using MATLAB for state space frequency response models an efficient
adjunct to ANSYS. We will review how to have MATLAB build a state space
model given only the eigenvalues and required eigenvector information
(eigenvector entries for all modes for only input and output degrees of
freedom). This technique will be used for all following models, in conjunction
with various mode elimination/truncation techniques.

The problem to be solved in this chapter is: Determine the smallest state space
model which accurately constructs the frequency response characteristics
through a given frequency range. We will assume for our problem that the
servo system requires all significant modes through 20khz be included. The
servo system will apply inputs in the z direction at the node located at the mid-
length of the cantilever, with z direction displacement of the tip being the
output.

The first step in defining the smallest model is to define the eigenvector
elements for all modes for only the input and output degrees of freedom. The
second step is to analyze the modal contributions of all the modes and sort
them to define which ones have the greatest contribution.

One method for reducing the size of a modal model is to simply truncate the
higher frequency modes. If this truncation is performed without understanding
the contributions of each of the modes to the response, several problems could
arise. One problem is that a high frequency mode that could alias to a lower
frequency in a sampled servo system may be missed. Another hazard with
arbitrarily truncating higher frequency modes is that a mode with a significant



Chapter 15 SISO State Space MATLAB Model from ANSY'S Model 389

dc gain contribution may be eliminated, adversely affecting the model.
Typically the contributions of modes decrease as their frequencies increase;
however, this is not always the case. In Chapter 16 we will see a cantilever
mode! with an additional tip mass and a tip spring all mounted on a “shaker”
base. It is used as an example of how excluding a specific higher frequency
mode can result in a model with less than desired accuracy.

15.2 ANSYS Eigenvalue Extraction Methods

ANSYS has a number of different eigenvalue extraction techniques, but for
most problems only two methods are commonly used. The first method,
Block Lanczos, is the fastest and calculates all the eigenvalues or eigenvalues
in a specific frequency range. Most practical models require knowledge of the
modes from dc through a specified higher frequency.

The second method, Reduced, performs a Guyan reduction on the model to
reduce its size, then calculates all the eigenvalues for the reduced model. All
of the “master” degree of freedom eigenvector components are available
immediately for use. Obtaining eigenvector components for the reduced
degrees of freedom requires an additional calculation step in ANSYS.

For very large models, Block Lanczos has shown to be significantly faster than
the Reduced method. If MATLAB state space models are used to calculate
frequency responses using Block Lanczos results the total time to get model
results can be quite satisfactory. Typically, the Reduced method is used only
for small- to medium-size problems.

15.3 Cantilever Model, ANSYS Code cantbeam_ss.inp, MATLAB Code
cantbeam_ss_freq.m

The ANSYS code cantbeam_ss.inp, listed in Section 15.7, is designed to
allow the user to easily change the number of elements “num_elem” as well as
the eigenvalue extraction technique “eigext.”

The model was run for 2, 4, 6, 8, 10, 12, 16, 32 and 64 elements for both
eigenvalue extraction methods. The Lanczos method resulted in twice the
number of eigenvalues as the Reduced method because both translations and
rotations are degrees of freedom for Lanczos, while the Reduced method has
the rotations reduced out.

For those interested, the MATLAB code cantbeam_ss freq.m plots the
results of the ANSYS runs along with the theoretical frequencies for up to the
first 16 modes (Chang 1969).



390 Vibration Simulation Using MATLAB and ANSYS

Figures 15.2 and 15.3 show the percentage frequency differences between the
first 10 modes of the ANSYS Block Lanczos and Reduced runs and the
theoretical prediction.

The maximum frequency difference for the Block Lanczos method is 2% and
for the Reduced method it is 5%. For the frequency range of interest in our
problem, 20 khz, the maximum frequency errors are 1% and 3%, which is
deemed satisfactory. We will use the 10-element model with the Reduced
method for the rest of the chapter. Real life models will have greater
deviations because they have imperfect geometry, joints and connections to
ground which are difficult to model accurately, and variations in material and
mass properties.

percent frequency differences between Lanczos 10 element and theoretical models
10 T T T T T T T A

10" b : /\

percent resonant frequency difference

I L . L . L
1 2 3 4 5 6 7 8 9 10
‘mode number

Figure 15.2: Percent resonant frequency differences between 10-element Block Lanczos
ANSYS model and theoretical versus mode number.



Chapter 15 SISO State Space MATLAB Model from ANSYS Model 391

Percent frequency differences between Lanczos 10 element and theoretical models
0 —-

percent resonant frequency difference, hz

1 0'4 il 3 i
10° 10 10 10°
resonant frequency, theoretical modet

Figure 15.3: Percent resonant frequency differences between 10-element Block Lanczos
ANSYS model and theoretical versus frequency.

15.4 ANSYS 10-element Model Eigenvalue/Eigenvector Summary

*xkix INDEX OF DATA SETS ON RESULTS FILE *****

SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE
1 149.20
935.05
2619.0
51384
8521.2
12820.
18152.
24671.
32229.
39191,

DO~ bhWN
— D 00N R WN -

=N 00~ AW —
<

S N Y
o

—
o

Table 15.1: Frequency listing from cantbeaml0red.frq file — frequencies for all 10 modes,
hz.

In Table 15.2 we can see the eigenvector listing for the first two modes from
the edited cantbeam10red.eig file, which contains information for all nodes for
all 10 modes. As discussed in Section 7.4.2, ANSYS normalizes eigenvectors
with respect to mass by default. Since our problem has input applied at the
middle node (node 7), and output at the tip node (node 11), only those two
nodes are required for the MATLAB model. We can choose to use ANSYS to
output only the eigenvectors for nodes 7 and 11 or we can input the complete




392  Vibration Simulation Using MATLAB and ANSY'S

modal matrix below in MATLAB and choose the appropriate rows of data
within MATLAB.

SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION=
1 TIME/FREQUENCY= 149.20
TITLE= cantbeam, 10, red
PRINT DOF NODAL SOLUTION PER NODE
***+% POST1 NODAL DEGREE OF FREEDOM LISTING *#**#**

LOAD STEP= 1 SUBSTEP= 1
FREQ= 149.20 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX 1804 Uz ROTX ROTY ROTZ
1 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000

2 0.0000  0.0000 6.9217 0.0000 -6.7553  0.0000
3 0.0000 0.0000 26.357 0.0000 -12.514 0.0000
4 0.0000  0.0000 56.320 0.0000 -17.287  0.0000
5 0.0000  0.0000 94.863 0.0000 -21.099  0.0000
6 0.0000 0.0000 140.11 0.0000 -23.997 0.0000
7 0.0000  0.0000 190.29 0.0000 -26.054  0.0000
8 0.0000 0.0000 243.83 0.0000 -27.371  0.0000
9 0.0000  0.0000  299.37 0.0000 -28.085 0.0000
10 0.0000  0.0000 355.87 0.0000 -28.358  0.0000
11 0.0000  0.0000 412.66 0.0000 -28.407 0.0000

MAXIMUM ABSOLUTE VALUES

NODE 0 0 11 0 11 0
VALUE 0.0000 0.0000 412.66 0.0000 -28.407 0.0000
*ENDDO INDEX=1

*#*+%* POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 2
FREQ= 93505 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UXx Uy Uz ROTX ROTY ROTZ
1 0.0000 0.0000 0.0000 0.0000 ~ 0.0000 0.0000
2 0.0000  0.0000 -38.227 0.0000 34.605 0.0000
3 0.0000  0.0000 -124.24 0.0000 47.942  0.0000
4 0.0000 0.0000 -217.13 0.0000 41.980  0.0000
5 0.0000 0.0000 -282.06 0.0000 20.864  0.0000
6 0.0000  0.0000 -294.52 0.0000 -9.3483  0.0000
7 © 0.0000 0.0000 -243.27 0.0000° -41.660  0.0000
8 0.0000  0.0000 -130.84 0.0000 -69.535 0.0000
9 0.0000  0.0000 28911 0.0000 -88.467  0.0000
10 0.0000 0.0000 216.16 0.0000 -97.088  0.0000




Chapter 15 SISO State Space MATLAB Model from ANSYS Model 393

11 0.0000 0.0000 412.76 0.0000 -98.864 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 0 0 11 0 11 0
VALUE 0.0000 © 0.0000 412,70 0.0000 -98.864 0.0000

Table 15.2: Eigenvector listing for first two modes from the edited cantbeaml0red.eig file.
15.5 Modal Matrix

The ANSYS output file cantbeamlOred.eig can be sorted for only the UZ
component for all 10 modes and put into a modal matrix form using
extS6uz.m (see Appendix 1 for usage), as shown in Table 15.3. Each of the
10 columns in Table 5.3 represents the eigenvector for that mode, normalized
with respect to mass. Compare the first two columns below with the bold
“UZ” entries in the eigenvector listings in Table 15.2.

Columns 1 through 7

0 0 0 0 0 0 0
6.9217 -38.2270 94.1860 -159.3800 223.8100 -279.2100 320.1800
26.3570 -124.2400 249.6400 -311.9600 274.3700 -141.0000 -47.3120
56.3200 -217.1300 312.2800 -179.4100 -88.5050 283.0200 -246.1700
94.8630 -282.0600 217.1400 130.8000 -289.9000 45.1810 273.9500
140.1100 -294.5200 8.0768 292.6500 1.1237 -298.4100  -1.2392
190.2900 -243.2700 -195.6800 134.8400 291.6800  48.3890 -272.6900
243.8300 -130.8400 -271.4700 -164.7400  93.0350 284.4600 248.4900
299.3700 28.9110 -162.9800 -266.0000 -250.3900 -130.1600  52.2360
355.8700 216.1600  94.5080 -20.9260 -121.0900 -202.6200 -264.3300
412.6600 412.7000 413.1400 414.9000 419.7700 430.4900 449.0700

Columns 8 through 10

0 0 0

-341.5400 326.0200 223.4200
230.8300 -338.9500 -276.3500
-4.9143 283.7200 323.0000
-225.7900 -156.5300 -350.7100
320.6200  -9.8888  357.9400
-222.7800 173.8500 -344.2300
-8.8232 -294.1600 310.4200
237.8700 342.2200 -259.2800
-302.0500 -291.4900 187:8300
467.0400 439.1200 -282.9400

Table 15.3: Eigenvectors for UZ component of cantbeam10red.eig file.

The 11 rows represent the normalized displacements for the 11 nodes, starting
with node 1 at the built-in end and node 11 at the tip. Editing the modal




394  Vibration Simulation Using MATLAB and ANSYS

matrix to use only the required degrees of freedom (nodes 7 and 11) will take
place in MATLAB.

15.6 MATLAB State Space Model from ANSYS Eigenvalue Run - .
cantbeam_ss_modred.m

In this section we will create a MATLAB state space model using the
eigenvalue and eigenvector results from the previous ANSYS run. We
discussed in Section 7.9 how to decrease the size of the model by including
only degrees of freedom actually used in the particular frequency response or
time domain calculations. The new material deals with how te rank the
relative importance of the contributions of each of the individual modes.
In this chapter, we will use a ranking of dc gains of individual modes to
select the modes to be used.

Once the modes are ranked, the most important can be selected for use, with
modes with lower dc gains (typically, but not always, the higher frequency
modes) eliminated from the model. When these modes are eliminated from
the model their d¢ gain contributions are not included in the overall dc gain, so
there is error in the low frequency gain. In order to eliminate this error, the
MATLAB function “modred” is introduced and the theory behind the code is
discussed. Using “modred” is analogous to using Guyan reduction to reduce
some less important degrees of freedom, in that assumptions are made about
some modes being more important than others. This allows reducing the size
of the problem to that of the “important” modes, while adjusting the overall dc
gain to account for the dc gains of the eliminated modes.

We will find that the simple cantilever beam used for an example in this
chapter is not very sensitive to the elimination of higher frequency modes.
Including a few modes is sufficient for creating a state space model with good
accuracy for both frequency response and step response. Whether “modred” is
used is not critical for this example. However, we will see that the example in
the next chapter is extremely sensitive to dc gain, and will serve as a good
model of the benefits of selecting modes to be eliminated judiciously or by
using “modred.”

Once the model is created, we will solve for frequency response and step
response using various combinations of truncating and sorting modes.

The MATLAB code cantbeam_ss_modred.m will be discussed and listed in
detail in the following sections.



Chapter 15 SISO State Space MATLAB Model from ANSYS Model 395

15.6.1 Input

The code in this section asks the user to define how many elements will be
used for the analysis. ANSYS runs have been made for 2, 4, 6, 8, 10, 12, 16,
32 and 64 elements. The ANSYS eigenvector results for each have been
stripped out of the ANSYS format and put into frequency vector, “freqvec,”
and modal matrix, “evr,” form and stored as MATLAB .mat files.

% cantbeam_ss_modred.m
clear all;
hold off;
clf;
% load the .mat file cantbeamXXred, containing evr - the modal matrix, freqvec -
% the frequency vector and node_numbers - the vector of node numbers for the modal
% matrix

model = menu(‘choose which finite element model to use ... ', ....
2 beam elements', ...
'4 beam clements’, ...
'6 beam elements', ...
'8 beam clements', ...
'10 beam ¢lements, ...
'12 beam elements’, ...
'16 beam elements’, ...
'32 beam elements, ...
'64 beam clements');

if model=1

load cantbeam2red;
elseif model ==

load cantbeamdred;
elseif model ==

load cantbeaméred;
elseif model =4

load cantbeam8red;
elseif model =75

load cantbeam10red;
elseif model ==

load cantbeam12red;
elseif model ==

load cantbeam16red;
elseif model ==

load cantbeam32red;
elseif model ==

load cantbeamé64red;
end




396  Vibration Simulation Using MATLAB and ANSYS

15.6.2 Defining Degrees of Freedom and Number of Modes

The code below checks the size of the modal matrix, where the number of
rows indicates how many degrees of freedom are used and the number of
columns indicates the number of modes. Since all of the models have an even
number of elements, there is always a node at the midpoint of the beam and it
is possible to define which row of the modal matrix corresponds to that middle
node. The modal matrix row which corresponds to the tip is the last degree of
freedom in the matrix. The code also defines a new variable, “xn,” the
normalized modal matrix.

% define the number of degrees of freedom and number of modes from size
% of modal matrix

[numdof,num_modes_total] = size(evr);

% define rows for middle and tip nodes
mid_node_row = 0.5*(numdof-1)+1;
tip_node_row = numdof}

Xn = evr;

15.6.3 Sorting Modes by d¢ Gain and Peak Gain, Selecting Modes Used

The next step in creating the model is to sort modes of vibration so that only
the most important modes are kept. We will discuss in this section two
methods of sorting, one which is applicable for models with the same value of
damping for all modes, {, = { = constant (“uniform” damping), and another
which is applicable for models with different damping values for each mode
(“non-uniform” damping).

Repeating from (8.54a,b) the general equation for the overall transfer function
of undamped and damped systems:

Zi A ZyZo
E, a s+
(15.1a,b)
z _ zm: ZyiZog
E T +2los+0]

This equation shows that in general every transfer function is made up of
additive combinations of single degree of freedom systems, with each system




Chapter 15 SISO State Space MATLAB Model from ANSYS Model 397

having its residue determined by the appropriate input/output eigenvector
entries, z,,7,,;, and with resonant frequency defined by the eigenvalue, ®,.

Substituting s = jo = j0 = 0 to obtain the i™ mode frequency response at dc,
the dc gain, which is the same for the undamped and damped cases is:

LI, LN ~ (15.2)

where z .z, is the product of the jth (output) row and kth (force applied)

row terms of the ith eigenvector divided by the square of the eigenvalue for the
ith mode.

At resonance, the peak gain amplitude of each mode is given by substituting
s=jo,s’ =—a into (15.1b):

Z Z i Z ki

s? + 20,05+ 0}
_ Z i Z ki

0} +28,0 j+ ]

Z5jiZoki

28,0 j

-j Z i Z i
260

=—_j Z i Z o
26\ o

= %(dcgain)

i

(15.3)

Comparing (15.2) and (15.3) it is evident that the relationship between the dc
gain and peak gain for a mode is that the dc gain term is divided by 2 and

multiplied by “—j,” which gives a —90° phase shift at resonance. Since {

values for mechanical structures are typically small, a few percent of critical
damping, 2 is a small number, which serves to amplify the response by

virtue of the division, thus the resonant “peak” in the response.

"If the same value of { is used for all modes, then all the dc gain terms are
divided by the same 2 terms and the relative amplitudes of the dc gains and



398 Vibration Simulation Using MATLAB and ANSYS

peak gains are the same, so there is no difference between sorting a uniform
damping model using dc gain or peak gain.

However, if the modes have different damping the relationship between the dc
gain and peak gain for all the modes is not a constant 1/2{ value and peak

gain must be used to rank modes for importance. In this case, the MATLAB
damping parameter “zeta” would not be a scalar but would be a vector with
entries corresponding to damping in each mode.

We will use dc gain to rank the relative importance of the modes until Chapter
18, where a technique named “balanced reduction” will be introduced. The
code shown below, and throughout the book, is easily modified to sort for
peak gain instead of dc gain using (15.3) instead of (15.2) and entering a
vector of damping values instead of a scalar.

The code below carries out the calculation of the dc gain and sorts from
smallest to largest, keeping track of the new column locations in “index_sort.”
It then uses the “fliplr” command to list them from largest to smallest, so that
the first mode has the highest dc gain. Various plots are then shown to
indicate the relative importance of each mode. After plotting the dc gains, the
user is asked to define the number of modes to be used in the frequency
response, from 1 to all the available modes.

% calculate the dc amplitude of the displacement of each mode by
% multiplying the forcing function row of the eigenvector by the output row

omega2 = (2*pi*freqvec)'.”2; % convert to radians and square
dc_gain = abs(xn(mid_node_row,:).*xn(tip_node_row,:))./omega2;
[de_gain_sort,index_sort] = sort(dc_gain);

dc_gain_sort = fliplr(dc_gain_sort);

index_sort = fliplr(index_sort)

dc_gain_nosort = dc_gain;

index_orig = 1:num_modes_total;
semilogy(index_orig,freqvec,'k-");

title('frequency versus mode number')

xlabel('mode number')

ylabel('frequency, hz')

grid

pause

semilogy(index_orig,dc_gain_nosort,’k-")
title('dc value of each mode contribution versus mode number’)




Chapter 15 SISO State Space MATLAB Model from ANSYS Model 399

xlabel('mode number')
ylabel('dc value')

grid off
pause

loglog(freqvec,dc_gain_nosort,’k-")

title('dc value of each mode contribution versus frequency')
xlabel('frequency, hz')

ylabel('dc value')

grid off

pause

semilogy(index_orig,dc_gain_sort,'’k-")

title("sorted dc value of each mode versus number of modes included')
xlabel('modes included')

ylabel('sorted dc value')

grid off

pause

num_modes_used = input({’enter how many modes to include ...
, ,num2str(num_modes_total),' default, max ... ']);

if (isempty(num_modes_used))
num_modes_used = num_modes_total;
end

The first step in any finite element analysis is to understand the resonant
frequencies of the model and how they relate to the frequency range of interest
for the problem at hand.

frequency versus mode number

LAl

frequency, hz

[ I I I
[

[r-yy
Iy
o

I 1

I 1

5 6
mode number

Figure 15.4: Resonant frequency versus mode number.




400 Vibration Simulation Using MATLAB and ANSYS

Figure 15.4 shows that modes 8, 9 and 10 have frequencies higher than the
required 20 khz required by the problem, so our model should be adequate.

. dc value of each mode contribution versus mode number
10 g T T T i .

dc value

mode number

Figure 15.5: dc value of each mode contribution versus mode number.

Figure 15.5 shows the dc gain values for all the modes plotted versus mode
number. It is interesting that the low values for modes 3, 5, 7 and 9
correspond to small values of the midpoint node elements of the respective
eigenvectors (see the bold highlighted entries in columns 3, 5, 7 and 9 in Table
15.3). This means that the midpoint is nearly a “node” for those modes.
Again, a “node” for a mode refers not to the number of the end point of the
element but a location along the beam where the displacement is zero for a
particular mode of vibration.



Chapter 15 SISO State Space MATLAB Model from ANSYS Model 401

dc value of each mode contribution versus frequency

10 - : SEmaas

dc value

frequency, hz
Figure 15.6: dc Value of each mode contribution versus resonant frequency.
Figure 15.6 shows dc gain versus frequency of the mode. Note that there is a
general trend for lower gains as frequency increases. This is not always the

case, as we shall see in Chapter 16.

sorted dc value of each mode versus number of modes included
107 - T - T o T ; T

sorted dc value

}

) S ‘

1 2 3 4 5 6 7 8 9 10
modes included

Figure 15.7: Sorted dc value of each mode versus number of modes included.

Figure 15.7 shows the sorted values for the dc gains, from largest to smallest.
The list of mode numbers after sorting is given by “index sort” below. The
ordering can be seen in the dc value versus mode number plot in Figure 15.5.



402  Vibration Simulation Using MATLAB and ANSYS

index sot= 1 2 4 6 3 8 10 5 9 7

15.6.4 Damping, Defining Reduced Frequencies and Modal Matrices

The section below asks for the damping value and whether to use the original
ordering of modes or the modes sorted by dc gain. At this point, three
different sets of modal matrices and eigenvalue vectors will be defined. The
first set uses all the modes and frequencies and keeps them in their original,
unsorted order. This set will be used to calculate frequency and step responses
of the non-reduced model for comparison. The second set uses only the
“num_modes used” number of modes and keeps them in their original,
unsorted order. This set will be used to see the effects of a simple truncation
of higher frequency modes without sorting or ranking. The third set again uses
the “num_modes_used” number of modes but includes only the modes with
the highest dc gains. We will calculate frequency response and transient
response results for both of the reduced cases and compare results with the “all
modes included” case. The two reduced models are denoted with the
“ nosort” and “_sort” suffixes throughout the code. We will see that because
the dc gain values for this model generally decrease with frequency, the sorted
and unsorted models will give almost the same results. The example in the
next chapter, however, will not have this property.

zeta = input(‘enter value for damping, .02 is 2% of critical (default) ... ");
if (isempty(zeta))
zeta = .02;
end
% all modes included model, use original order
xnnew = xn(:,(1:num_modes_total));
freqnew = freqvec((1:num_modes_total));
% reduced, no sorting, just use the first num_modes _used modes in xnnew_nosort
xnnew_nosort = xn(:,1:num_modes_used);
freqnew_nosort = freqvec(l:num_modes_used);
% reduced, sorting, use the first num_modes_used sorted modes in xnnew_sort
xnnew_sort = xn(:,index_sort(1:num_modes_used));

freqnew_sort = freqvec(index_sort(1:num_modes_used));

/



Chapter 15 SISO State Space MATLAB Model from ANSYS Model 403

15.6.5 Setting up System Matrix “a”

The section below sets up three state space system “a” matrices. Since we
know the form of the modal form state space equation from Chapter 10, it can
be built automatically. The general form is given by (15.4). The system
matrix is made up of eigenvalue and damping terms for each mode, and each
mode is a 2x2 submatrix along the diagonal.

% = Ax + Bu (15.4)
(%1 [ 0 1 0 0 .. %] [0]
X, -0 2w, 0 0 R | ' E,
X, 0 0 0 | I | 'S 0

= + 15.5
L]0 0 - 2o .. .||x v 3155

The first system matrix, “a,” is for the full, non-reduced system and includes
all the modes in their original order. The second is “a nosort” and has the

reduced size with the original ordering of modes. The third is “a_sort” and
has the reduced number of modes with dc gain ordering.

o]
)

% define variables for all modes included system matrix, a
w = freqnew*2*pi; % frequencies in rad/sec
w2 =w."2;

zw = 2*zeta*w;
% define variables for reduced, nosorted system matrix, a_nosort
w_nosort = freqnew_nosort*2*pi; % frequencies in rad/sec
w2_nosort = w_nosort."2;
zw_nosort = 2*zeta*w_nosort;
% define variables for reduced, sorted system matrix, a_sort
w_sort = freqnew_sort*2*pi; % frequencies in rad/sec
w2_sort =w_sort."2;
Zw_sort = 2*zeta*w_sort;

% define size of system matrix




404  Vibration Simulation Using MATLAB and ANSYS

asize = 2*num_modes_total;

asize_red =2*num_modes_used;

disp(’ ');

disp(' '); «

disp(['size of system matrix a is ',num2str(asize)));

disp(['size of reduced system matrix a is ,num2str(asize_red)));
% setup all modes included "a" matrix, system matrix

a = zeros(asize);

for col=2:2:asize

row = col-1;

a(row,col) = 1;

end

for col= 1:2:asize

row = col+1;

a(row,col) = -w2((col+1)/2);

end

for col =2:2:asize

row = col;

a(row,col) = -zw(col/2);

end
% setup reduced, nosorted "a_nosort" matrix, system matrix

a_nosort = zeros(asize_red);

for col = 2:2:asize red

row = col-1;

a_nosort(row,col) = 1;

end

for col = 1:2:asize_red

row = col+1;

a_nosort(row,col) = -w2_nosort((col+1)/2);




Chapter 15 SISO State Space MATLAB Model from ANSYS Model 405

end
for col =2:2:asize red
row = col;
a_nosort(row,col) = -zw_nosort(col/2);
end
% setup reduced, sorted "a_sort" matrix, system matrix
a_sort = zeros(asize_red);
for col =2:2:asize_red
row = col-1;
a_sort(row,col) = 1;
end
for col = 1:2:asize_red
row = col+1;
a_sort(row,col) = -w2_sort((col+1)/2);
end
for col =2:2:asize red
row = col;
a_sort(row,col) = -zw_sort(col/2);

end

15.6.6 Setting up Input Matrix “b”

As with the system matrix above, here we will set up three different input
matrices, “b,” “b_nosort” and “b_sort.” We begin with the force vector in
physical coordinates, with “numdof” rows. The rows are all zeros except for
the “mid_node row,” which has a value of 1.0 mN. The force vector in
principal coordinates is obtained by premultiplying by the transpose of the
modal matrix. The state space form of the force vector in principal
coordinates is the “numdof x 17 force vector in principal coordinates padded
with zeros to create the same number of rows as states.



406 Vibration Simulation Using MATLAB and ANSYS

%

%
%

%

%

%

%

%

%

setup input matrix b, state space forcing function in principal coordinates

f physical is the vector of physical force
zeros at each output DOF and input force at the input DOF

f physical = zeros(numdof,1); % start out with zeros
f physical(mid_node_row)=1.0; % input force at node 6, midpoint node
f_principal is the vector of forces in principal coordinates
f_principal = xnnew'*f physical,
b is the vector of forces in principal coordinates, state space form
b = zeros(2*num_modes_total,1);
for cnt=l:num _modes_total
b(2*cnt) = f principal(cnt);
end
f_principal_nosort is the vector of forces in principal coordinates
f_principal_nosort = xnnew_nosort'*f physical;
b_nosort is the vector of forces in principal coordinates, state space form
b_nosort = zeros(2*num_modes_used,1);
for cnt = l:num_modes_used
b_nosort(2*cnt) = f_principal_nosort(cnt);
end
f principal_sort is the vector of forces in principal coordinates
f principal_sort = xnnew_sort™*{ physical;
b_sort is the vector of forces in principal coordinates, state space form
b_sort = zeros(2*num_modes_used,1);
for cnt= l:num_modes used
b_sort(2*cnt) = f_principal_sort(cnt);

end




Chapter 15 SISO State Space MATLAB Model from ANSYS Model 407

15.6.7 Setting up Output Matrix “c” and Direct Transmission
Matrix “d”

The output matrices below, “c,” “c_nosort” and “c_sort,” are separated into
displacement and velocity matrices, “cdisp” and “cvel,” so that they can be
premultiplied by the appropriate modal matrix to obtain vectors of
displacements and velocities in physical coordinates. With the defined output
displacement and velocity matrices, all displacement and velocity degrees of
freedom in physical coordinates are available for plotting or further analysis.
Since there is no direct feedthrough on this model, the “d” matrix is zero.

% setup cdisp and cvel, padded xn matrices to give the displacement and velocity

% vectors in physical coordinates

% cdisp and cvel each have numdof rows and alternating columns consisting of columns
% of xnnew and zeros to give total columns equal to the number of states

% all modes included cdisp and cvel

for col = 1:2:2*length(freqnew)
for row = l:numdof
cdisp(row,col) = xnnew(row,ceil(col/2));
cvel(row,col) = 0;
end
end
for col =2:2:2*length(freqnew)
for row = 1:numdof
cdisp(row,col) = 0;
cvel(row,col) = xnnew(row,col/2);
end
end
% reduced, nosorted cdisp and cvel
for col = 1:2:2*length(freqnew_nosort)
for row = 1:numdof
cdisp_nosort(row,col) = xnnew_nosort(row,ceil(col/2));

cvel_nosort(row,col) = 0;




408 Vibration Simulation Using MATLAB and ANSYS

end
end
for col = 2:2:2*length(freqnew_nosort)
for row = l:numdof
cdisp_nosort(row,col) = 0;
cvel_nosort(row,col) = xnnew_nosort(row,col/b;
end
end
% reduced, sorted cdisp and cvel
for col = 1:2:2*length(freqnew_sort)
for row = 1:numdof
cdisp_sort(row,col) = xnnew_sort(row,ceil(col/2));
cvel_sort(row,col) = 0;
end
end
for col = 2:2:2*length(freqnew_sort)
for row = l:numdof
cdisp_sort(row,col) = 0;
cvel_sort(row,col) = xnnew_sort(row,col/2);
end
end
% define output

d=[0]; %




Chapter 15 SISO State Space MATLAB Model from ANSYS Model 409

15.6.8 Frequency Range, “ss” Setup, Bode Calculations

The first part of this section defines the frequency range to be used for the
frequency responses, logarithmically spaced frequency vectors in units of hz
and rad/sec. Three “ss” state space systems are defined for the displacement
of the tip of the beam, the non-reduced system, the “nosort” and the “sort.”
Since “cdisp” contains information about all the degrees of freedom, they are
all available for output by defining the appropriate row. The “bode” command
is used to calculate the magnitude and phase vectors over the defined
frequency range, and the magnitudes are converted to db.

% define frequency vector for frequency responses
freqlo = 10;
freghi = 100000;

flo=log10(freqlo) ;
fthi=log10(freghi) ;

f=logspace(flo,thi,200) ;

frad=f*2*pi ;
% take transfer functions, outputting the midpoint and tip node rows of the displacement
% vector cdisp
% define displacement state space system with the "ss" command

sysdisptip = ss(a,b,cdisp(tip_node_row,:),d);

% defined reduced systems using num_modes_used nosort modes
sysdisptip_nosort = ss(a_nosort,b_nosort,cdisp_nosort(tip_node_row,:),d);

% define reduced systems using num_modes_used sorted modes
sysdisptip_sort = ss(a_sort,b_sort,cdisp_sort(tip_node_row,:),d);

% use "bode" command to generate magnitude/phase vectors
[magdisptip,phsdisptip]=bode(sysdisptip,frad) ;
[magdisptip_nosort,phsdisptip_noson]=bode(sysdisptip_noéort,frad) ;
[magdisptip_sort,phsdisptip_sort]=bode(sysdisptip_sort,frad) ;

% convert magnitude to db
magdisptipdb = 20*10g10(magdisptip);

magdisptipdb_nosort = 20*log1 0(magdisptip_nosort);




410 Vibration Simulation Using MATLAB and ANSYS

magdisptipdb_sort = 20*logl O(magdisptip_sort);

15.6.9 Full Model - Plotting Frequency Response, Step Response

This section plots the frequency response for tip displacement due to a unit
force at the beam midpoint. It then overlays the contribution of each
individual mode to the overall response. Since the “a” matrix consists of 2x2
submatrices along the diagonal, all we have to do to get the contribution of
each individual mode is to pull out successive 2x2 individual mode system
matrices. Similarly, we take the appropriate rows and columns of “b” and
“cdisp” for each mode. Because of the systematic form of the matrices,
MATLAB can generate the individual mode matrices automatically. To
facilitate comparison with the dc gain values calculated for all the modes (and
used in their sorting), an “o0” is plotted along the left-hand axis for each
individual mode. Because the magnitude axis is in db units, the individual
contributions cannot be combined graphically like with a linear magnitude axis
as shown in Chapter 6. Nevertheless, using the overlaid plots to get a mental
image of the combining modes is valuable.

For the unit force step response, a time vector, “t” and input vector “u” are
defined for use with the MATLAB function “Isim.”

% start plotting
if num_modes used == num_modes_total
% plot all modes included response
semilogx(f,magdisptipdb(1,:),’k.-")
title(['cantilever tip displacement for mid-length force, all ', ...
num?2str(num_modes_used),’ modes included'])
xlabel('Frequency, hz')
ylabel('Magnitude, db mm’)
grid off
pause
hold on
max_modes_plot = num_modes_total;
for pent = 1:max_modes_plot
index = 2*pent;

amode = a(index-1:index,index-1:index);

bmode = b(index-1:index);




Chapter 15 SISO State Space MATLAB Model from ANSYS Model

411

cmode = cdisp(numdof,index-1:index);
dmode = [0];

sysdisptip_mode = ss(amode,bmode,cmode,dmode);

[magdisptip_mode,phsdisptip_mode]=bode(sysdisptip_mode,frad) ;

magdisptip_modedb = 20*log10(magdisptip_mode);
semilogx(f,magdisptip_modedb(1,:),’k-")

end

dc_gain_freq = freqlo*ones(size(freqnew));

semilogx(dc_gain freq(1:num_modes_used),20*log10(dc_gain
(1:num_modes_used)),'ko:")

pause
hold off
% now use lsim to calculate step response to a unit force
ttotal =
t = linspace(0,ttotal,200);
u = ones(size(t));
[disptip,ts] = Isim(sysdisptip,u,t);
plot(ts,disptip,'’k-")
title({'tip disp for mid-length step force, all ',num2str(num_modes_used), .
' modes included'])
xlabel('time, sec')
ylabel('displacement, mm")

grid off
pause




412  Vibration Simulation Using MATLAB and ANSYS

cantilever tip displacement for mid-length force, ali 10 modes included
20— - T ey T

g 8

Magnitude, db mm

-180 1 ,2 ‘3 4
10 10 10 10 10
Frequency, hz

Figure 15.8: Cantilever tip displacement for mid-length force, all 10 modes included.

Figure 15.8 shows the overall frequency response with the overlaid sdof
responses of all the individual modes for the 10-element model using all 10
available modes. The “0’s” at the 10 hz frequency indicate the values of dc
gain for each mode. Note that the fifth, seventh and ninth modes have such
low gains that their resonant peaks are barely visible on the overall response.
The third mode has a higher gain, as indicated by the small pole/zero
combination between the second and fourth modes.

tip disp for mid-iength step force, all 10 modes included
0.14 T T T T T T T T

012 1

displacement, mm
o o
o o
& 8 =
7 7 T
) y

o
b

20.02 1 1 L i 1 L ! | I
0 001 002 003 004 005 006 007 008 009 01

time, sec

Figure 15.9: Cantilever tip displacement for mid-length force, all 10 modes included.



Chapter 15 SISO State Space MATLAB Model from ANSYS Model 413

Figure 15.9 depicts the response of the beam tip due to a ImN step force at the
midpoint. We will be comparing the different modal truncation methods with
this overall response.

15.6.10 Reduced Models — Plotting Frequency Response, Step Response

The following section of code does the same thing for the reduced unsorted
and sorted models as the last section did for the full model. In all the plots, the
full model results are overlaid with the reduced model results to show the
differences. In the examples that follow, we will use four modes in the
reduced models. The reader is encouraged to run the code using different
numbers of reduced modes to see the effects on both frequency and time
domain responses.

else
% plot unsorted modal truncation
semilogx(f,magdisptipdb(1,:),'’k-',f,magdisptipdb_nosort(1,:),’k.-")
title(['unsorted modal truncation: cantilever tip displacement for mid- ...
length force, first ,num2str(num_modes_used),’ modes included'])

legend('all modes','unsorted partial modes',3)

dcgain_error_percent_nosort = 100*(magdisptip_nosort(1) ...
magdisptip(1))/magdisptip(1)

xléibe]('Frequency, hz')

ylabel('Magnitude, db mm")

grid off

pause

hold on

max_modes_plot = num_modes_used;

for pent = 1:max_modes_plot
index = 2*pcnt;
amode = a_nosort(index-1:index,index-1:index);
bmode = b_nosort(index-1:index);
cmode = cdisp_nosort(numdof,index-1:index);
dmode = [0];
sysdisptip_mode = ss(amode,bmode,cmode,dmode);

[magdisptip_mode,phsdisptip_mode]=bode(sysdisptip_mode,frad) ;




414 Vibration Simulation Using MATLAB and ANSYS

%

magdisptip_modedb = 20*log 1 0(magdisptip_mode);
semilogx(f,magdisptip_modedb(1,:),'k-")

end

dc_gain_freq nosort = freqlo*ones(size(freqnew_nosort));

semilogx(dc_gain_freq nosort(l:num_modes_used),20*logl0 ...
(dc_gain_nosort(1:num_modes_used)),'’ko:")

pause
hold off

plot sorted modal truncation
semilogx(f,magdisptipdb(1,:),'’k-",f;magdisptipdb_sort(1,:),'’k.-")

title(['sorted modal truncation: cantilever tip displacement for mid-length force, ...

first ', num2str(num_modes_used),’ modes included'])
legend('all modes','sorted partial modes',3)

" dcgain_error_percent_sort = 100*(magdisptip_sort(1) - magdisptip(1))/magdisptip(1)

xlabel('Frequency, hz')

ylabel('Magnitude, db mm')

grid off

pause

hold on

max_modes_plot = num_modes_used;

for pent = 1:max_modes_plot
index = 2*pcnt;
amode = a_sort(index-1:index,index-1:index);
bmode =b_sort(index-1:index);
cmode = cdisp_sort(numdof,index-1:index);
dmode = [0];
sysdisptip_mode = ss(amode,bmode,cmode,dmode);
[magdisptip_mode,phsdisptip_mode]=bode(sysdisptip_mode,frad) ;
magdisptip_modedb = 20*log10(magdisptip_mode);

semilogx(f,magdisptip_modedb(1,:),’k-")




Chapter 15 SISO State Space MATLAB Model from ANSY'S Model

415

%

end
dec_gain_freq_sort = freqlo*ones(size(freqnew_nosort));

semilogx(dc_gain_freq sort(l:num_modes_used),20*logl0 ...
(dc_gain_sort(1:num_modes_used)),'’ko:")

pause
hold off

now use Isim to calculate step response to a unit force
ttotal = 0.1;

t = linspace(0,ttotal,200);

u = ones(size(t));

[disptip,ts] = Isim(sysdisptip,u,t);

[disptip nosort,ts_nosort] = Isim(sysdisptip_nosort,u,t);

[disptip_sort,ts_sort] = Isim(sysdisptip_sort,u,t);

plot(ts,disptip,’k-",ts_nosort,disptip_nosort,'k+-',ts_sort,disptip_sort,’k.-")

title(['tip disp for mid-length step force, first ,num2str(num_modes_used) ...

. modes included'])
legend(‘all modes','unsorted partial modes','sorted partial modes")
xlabel('time, sec’)
ylabel('displacement, mm')
grid off
pause




416  Vibration Simulation Using MATLAB and ANSYS

15.6.11 Reduced Models — Plotted Results — Four Modes Used

unsorted modal truncation: cantilever tip displacement for mid-length force, first 4 modes included
T T T

-100E

Magnitude, db mm

-120

-140

-160~‘ — all modes

—e— unsorted partial modes

-180 :
10' 10° 10° 10* 10

Frequency, hz

I L

Figure 15.10: Cantilever tip displacement for mid-length force, first four modes included —
unsorted modal truncation.

sorted modal truncation: cantilever tip displacement for mid-length force, first 4 modes included

2 TR — .o T T

N
S

& 8 &

Magnitude, db mm

&
=1
S

L
N
=)

-140 T — )l modes ™
—e— sorted partial modes o
-160 L
10! 100 10° 10* 10°

Frequency, hz

Figure 15.11: Cantilever tip displacement for mid-length force, first four modes included —
sorted modal truncation.

Figure 15.10 depicts overall plus individual mode contributions for the four
unsorted modes model. Note that the first four unsorted modes are used. The
dc gain error relative to the full 10-mode model is +0.024% because the dc



Chapter 15 SISO State Space MATLAB Model from ANSYS Model 417

gain terms for the eliminated modes are not included. Note that the last three
peaks in the “all modes” response are missed because the modes are not
included.

Figure 15.11 shows overall plus individual mode contributions for the four
sorted modes model. Note that this time the third mode is skipped and the
fifth mode is used instead because it has a higher dc gain. The dc gain error
relative to the full 10-mode model is —0.027%.

tip disp for mid-length step force, first 4 modes included
0.14 T —— T T

T T
~— all modes
—+ unsorted partial modes | |
—— sorted partial modes

Wauno
43 fur

L L]
140
yiuse

egiiss

o

8

"
i
L

o
o
B

el
gt
RTIT
i
ol

o
o
1)

displacerent, rm
=}
o
[a7]
FR ]
el
!
|
{

(=}
I

0.02

1 1 1 1 1 1 1 1 1
g 00t 002 003 004 005 006 007 003 003 01
time, sec

Figure 15.12: Comparison of step responses for all modes included and four modes
included, unsorted and sorted.

Figure 15.12 shows step response for full, reduced unsorted and reduced
sorted models. Because the dc gain for the two models is in error only by a
fraction of a percent and because the eliminated modes are some 80db (four
orders of magnitude) lower than the most significant first mode, there is no
discernable difference in the responses of the full and two reduced models.

15.6.12 Modred Description

The MATLAB Control System Toolbox has a function, “modred” (MODel
order REDuction), which can be used for reducing models while retaining the
overall system dc gain. The “mdc” or “Matched DC” gain option for the
function “modred” reduces defined states by setting the derivatives of the
states to be eliminated to zero, then solving for the remaining states. The
method essentially sets up the eliminated states to be “infinitely fast” and is
analogous to Guyan reduction in that the low frequency effects of the
eliminated states are included in the remaining states. The other option for



418  Vibration Simulation Using MATLAB and ANSYS

“modred” is the “del” option, which simply eliminates the defined states,
typically associated with the higher frequency modes.

The derivation of the “mdc” option follows. We start with the state space
description of the system:

X = Ax+Bu

v — Cx+Du (15.6a,b)

Assume that we have a method of ordering the importance of the modes
making up the A, B and C matrices, in our case using dc or peak gains. If we
then rearrange and partition the matrices such that the states corresponding to
the most important modes are separated from the less important modes,
designating the important modes as X, (reduced) and the unimportant modes

to be eliminated as x_, we get

X, A, A |lx, B,
= + u
Xe AC[ Aee Xe Be

v=I[C, CJ|:§':|+DU

(]

(15.7a,b)

Expanding the matrices:

X, =A X, +A X +Bu
. (15.8a,b)
X, = A, X, +A X . +B.u

Setting the x, states equal to zero in (15.10) is analogous to setting (14.14)

equal to zero in the Guyan reduction process. We are then, in effect, including
the low frequency dc gain or static equilibrium characteristics of the
eliminated modes in the reduced modes.

0=A_x +A,x +B.u (15.9)
Solving for x, :
x, =—A]lA. x, —A_B.u (15.10)

ee’ ¢

Substituting back into the X, equation and grouping terms:



Chapter 15 SISO State Space MATLAB Model from ANSYS Model 419

X, =A.X +A (-AA x,—~A_Bu)+Bu

ee €

(15.11)
= (Arr - AreA;iAer )Xr + (Br - AreA;Be )u
Substituting back into the expanded output equations:
y=Cx,+Cx, +Du
=Cx, +C, (-ALA.x, -ABu)+Du  (15.12)

=(C,-C,AIA,,)x, +(D-CA_B, )u

ec €
The new matrices for the reduced model become:

Ared = Arr _AreA;;Aer
Bred = Br _AreA—IB

ee €

C. =C,—CAJA

ee“Ter

D, =D-CAB

ee €

(15.13a,b,c,d)

The new state equations are:

x =A_x _ +B u
red redred ¥ Ored (15.14a,b)
Y = Credxred + Dredu

We will see (Figure 15.14) that the high frequency portion of the response
when reducing using “modred” does not roll off quickly with frequency as we
are used to seeing. Rather, it will be “flat” with frequency. The reason for the
shape of the “modred” high frequency asymptote is in the D_, term in
(15.13d). In many cases, the direct transmission term D is zero. When using
“modred,” however, even if D is zero, there is still the —CeA"'B portion of

D, to contend with. Repeating Figure 5.2 below, we can see the direct

transmission term.



420 Vibration Simulation Using MATLAB and ANSYS

Direct
Transmission
Matrix
» D
Input Matrix Integrator Block Output Matrix
x(t) )
u(t) > II > C = —> yO)
Input E— Output

ystem Matrix
——» scalar

A —y vECtOr

Figure 15.13: State space system block diagram,

At high frequencies, where the system matrix dynamics start to attenuate, the
—-C,A_.B, term of D_, starts to dominate the response — hence the “flat” high

frequency response in Figure 15.15.
15.6.13 Defining Sorted or Unsorted Modes to be Used

The section of code below prompts the user to define whether the modes are to
be sorted by dc gain or left in the original order for the “modred” operation.
One argument of the “modred” command is to define the states to be
eliminated. The states to be eliminated can be defined as a vector of arbitrary
states or as a continuous partition of states. We will define them in the code
below as a continuous block of states, from one index greater than the number
of states to be kept to the total number of states. Therefore, if we sort by dc
gain before using “modred,” we would keep only the most important states. If
we choose to use the unsorted states, we will be eliminating the higher
frequency modes and keeping the lower frequency modes.

% use modred to reduce, select whether to use sorted or unsorted modes for the reduction

modred_sort = input('modred: enter "1" to use sorted modes for reduced runs, ...
"enter" to use unsorted ... );

if isempty(modred_sort)
modred_sort=0
end




Chapter 15 SISO State Space MATLAB Model from ANSY'S Model 421

if modred_sort = 1 % use sorted mode order
xnnew = xn(:,index_sort(1:num_modes_total));
freqnew = freqvec(index_sort(1:num_modes_total});
else % use original mode order
xnnew = xn(:,(1:num_modes_total));
freqnew = freqvec((1:num_modes_total));

end

15.6.14 Defining System for Reduction

In this section we define a new set of “a,” “b,” “c” and “d” matrices which will
be used with “modred.”

Y% define variables for all modes included system matrix, a
w = freqnew*2*pi; % frequencies in rad/sec
w2 =w."2;

zw = 2*zeta*w;
% define size of system matrix
asize = 2*num_modes_total;
% setup all modes included "a" matrix, system matrix
a = zeros(asize),
for col =2:2:asize
row = col-1;
a(row,col) =1,
end
for col = 1:2:asize
row = coltl;
a(row,col) = -w2((col+1)/2);

end




422  Vibration Simulation Using MATLAB and ANSYS

%

%
%

%

%

%
%
%
%

%

for col =2:2:asize

row = col;

a(row,col) = -zw(col/2);

end

setup input matrix b, state space forcing function in principal coordinates

f physical is the vector of physical force
zeros at each output DOF and input force at the input DOF

f_physical = zeros(numdof, 1); % start out with zeros

f physical(mid_node_row) = 1.0; % input force at node
6,midpoint node

f principal is the vector of forces in principal coordinates
f principal = xnnew™f physical;
b is the vector of forces in principal coordinates, state space form
b = zeros(2*num_modes_total,1);
for cnt=1:num_modes_total
b(2*cnt) = {_principal(cnt);
end
setup cdisp and cvel, padded xn matrices to give the displacement and velocity
vectors in physical coordinates
cdisp and cvel each have numdof rows and alternating columns consisting of columns
of xnnew and zeros to give total columns equal to the number of states
all modes included cdisp and cvel
for col = 1:2:2*length(freqnew)
for row = 1:numdof
cdisp(row,col) = xnnew(row,ceil(col/2));
cvel(row,col) = 0;
end
end
for col = 2:2:2*length(freqnew)

for row = 1:numdof




Chapter 15 SISO State Space MATLAB Model from ANSYS Model 423

cdisp(row,col) = 0;
cvel(row,col) = xnnew(row,col/2);
end
end
% _ define output

d=[0]; %

15.6.15 Modred Calculations — “mdc” and “del”

This section defines a MATLAB state space, “ss,” system using either the
unsorted or sorted eigenvectors and eigenvalues from above, and then both the
“mdc” and “del” options with “modred” to calculate two reduced systems. In
order to be able to plot not only the overall frequency response from the
reduced systems but also the individual mode contributions, we will use the
“gsdata” function in MATLAB to define the reduced system matrices. In the
next section we will use 2x2 submatrices of the reduced system matrix to
define individual modal contributions. The “bode” command is then used to
generate the magnitude/phase solution vectors, which are converted to db.

% define state space system for reduction, ordered defined by modred_sort
sysdisptip_red = ss(a,b,cdisp(tip_node_row,:),d);
% define reduced matrices using matched dc gain method "mdc"
states_elim = (2*num_modes_used+1):2*num_modes_total;
sysdisptip_mdc = modred(sysdisptip_red,states_elim,'mdc");
[adisptip_mdc,bdisptip_mdc,cdisptip_mdc,ddisptip_mdc] = ssdata(sysdisptip_mdc);
% define reduced matrices by eliminating high frequency states, ‘del
sysdisptip_elim = modred(sysdisptip_red,states _elim,’del’);
[adisptip_elim,bdisptip_elim,cdisptip_elim,ddisptip_elim] = ssdata(sysdisptip_elim);
% use "bode" command to generate magnitude/phase vectors for reduced systems
[magdisptip_mdc,phsdisptip_mdc]=bode(sysdisptip_mdc,frad) ;
[magdisptip_elim,phsdisptip_elim]=bode(sysdisptip_elim,frad) ;
% convert magnitude to db

magdisptip_mdcdb = 20*log1 0(magdisptip_mdc);




424  Vibration Simulation Using MATLAB and ANSYS

magdisptip_elimdb = 20*log10(magdisptip_elim);

15.6.16 Reduced Modred Models — Plotting Commands

This section plots the frequency responses with the individual mode
contribution overlays for both the “mdc” and “del” options for “modred.” The
only difference between the code here and that of section 15.6.10 is that the
cmode term goes from 1: instead of numdof: because we are using the results
of the “modred” operation to define the reduced system matrix, which has only
one row in cdisptip instead of numdof rows in cdisp. Once again, “lsim” is
used to calculate the step response of the system.

% plot modred using 'elim'
semilogx(f,magdisptipdb(1,:),’k-",f,magdisptip_elimdb(1 ,:),‘k.-')
if modred_sort ==
title(['reduced elimination: tip disp for mid-length step force, ...
first ;num2str(num_modes_used),’ sorted modes included'])
else
title(["reduced elimination: tip disp for mid-length step force, ...
first ,num2str(num_modes_used),' unsorted modes included'])
end
legend(‘all modes','reduced elim',3)

dcgain_error_percent_sort = 100*(magdisptip_elimdb(1) ...
- magdisptip(1))/magdisptip(1)

xlabel('Frequency, hz')

ylabel('Magnitude, db mm")

grid off

pause

hold on

% now plot the overlay of the tip displacement magnitude with each mode contribution

max_modes_plot = num_modes_used;

for pent = 1:max_modes_plot
index = 2*pcnt;
amode = adisptip_elim(index-1:index,index-1:index);
bmode = bdisptip_elim(index-1:index);

cmode = cdisptip_elim(1,index-1:index);




Chapter 15 SISO State Space MATLAB Model from ANSYS Model

425

%

dmode = [0];
sysdisptip_mode = ss(amode,bmode,cmode,dmode);
[magdisptip_mode,phsdisptip_mode]=bode(sysdisptip_mode,frad) ;
magdisptip_modedb = 20*log10(magdisptip_mode);
semilogx(f,magdisptip_modedb(1,:),’k-")

end

dc_gain_freq sort = freqlo*ones(size(frequew_nosort));

pause

hold off

modred using 'mdc’

semilogx(f,magdisptipdb(1,:),'’k-",f,;magdisptip_mdcdb(1,:),'’k.-")

if modred_sort == 1

title({'reduced matched dc gain: tip disp for mid-length step force, ...

first ',num2str(num_modes_used),' sorted modes included'])
else

title(['reduced matched dc gain: tip disp for mid-length step force, ...

first ', num2str(num_modes_used),' unsorted modes included'])
end

legend('all modes', reduced mdc',3)

dcgain_error_percent_nosort = 100*(magdisptip_mdcdb(1) ...
- magdisptip(1))/magdisptip(1)

xlabel("Frequency, hz')

ylabel("Magnitude, db mm")

grid off

pause

hold on

max_modes_plot = num_modes_used;

for pent = 1:max_modes_plot
index = 2*pcent;
amode = adisptip_mdc(index-1:index,index-1:index);
bmode = bdisptip_mdc(index-1:index);

cmode = cdisptip_mdc(1,index-1:index);




426 Vibration Simulation Using MATLAB and ANSYS

dmode = [0];
sysdisptip_mode = ss(amode,bmode,cmode,dmode);
[magdisptip_mode,phsdisptip_mode]=bode(sysdisptip_mode,frad) ;
magdisptip_modedb = 20*log10(magdisptip_mode);
semilogx(f,magdisptip_modedb(1,:),’k-")
end
dc_gain_freq_nosort = freqlo*ones(size(freqnew_nosort));
pause
hold off
% now use lsim to calculate step response to a unit force
[disptip,ts] = Isim(sysdisptip,u,t);
[disptip_elim,ts_elim] = Isim(sysdisptip_elim,u,t);
[disptip_mdc,ts_mdc] = Isim(sysdisptip_mdc,u,t);
plot(ts,disptip,’k-",ts_mdc disptip_mdc,'k.-"ts_elim,disptip_elim,’k+-)
if modred_sort ==
title(['modred cantilever tip disp for mid-length step force, ...
first ,num2str(num_modes_used), sorted modes included'])
else
title(['modred cantilever tip disp for mid-length step force ...
, first ', num2str(num_modes_used),’ unsorted modes included'])
end
legend(‘all modes','reduced - mdc','reduced - ehm")
xlabel('time, sec')
ylabel('displacement, mm")
grid off

pause

end




Chapter 15 SISO State Space MATLAB Model from ANSY'S Model 427

15.6.17 Plotting Unsorted Modred Reduced Results — Eliminating High |
Frequency Modes

reduced elimination: tip disp for mid-length step force, first 4 unsorted modes included
20 T - T

-80

-100

Magnitude, db mm

-120

-140 ‘ i \
-160H — all modes i ;

—e— reduced elim
-180 e £ .

10’ 10° 10° 10 10°
Frequency, hz

Figure 15.14: Cantilever tip displacement for mid-length force, first four modes included —
unsorted modal truncation, modred “del” option.

reduced matched dc gain: tip disp for mid-length step force, first 4 unsorted modes included
20 T

-40 -

-100

Magnitude, db mm

120
-140 -

-160H — all modes
—e— reduced mdc
T

-180 s -
10 10 10 10* 10
Frequency, hz

L L

Figure 15.15: Cantilever tip displacement for mid-length force, first four modes included ~
unsorted modal truncation, modred “mdc” option.

Figure 15.14 shows overall frequency response with four overlaid individual
mode contributions for the unsorted “del” “modred” option, with the six



428  Vibration Simulation Using MATLAB and ANSYS

highest frequency modes eliminated. Note that at high frequencies the reduced
curve attenuates with frequency similar to the “all modes” curve.

Figure 15.15 shows overall frequency response with four overlaid individual
mode contributions for the unsorted “mdc” “modred” option, with the six
highest frequency modes reduced. Note the rise in the high frequency portion
of the magnitude curve as a result of the matrix reduction operations discussed
at the end of Section 15.6.12. Depending on the purpose of the model, the
high frequency discrepancy may or may not be important.

madred cantilever tip disp for mid-length step force, first 4 unsorted modes included
™ T T T T T T T
— all modes
—— reduced - mde

012+ —— reduced - elim ]

o
=] o
oo pry
J T
AL
101
o
rTinn
2
i
'

it

<

o

=
i
1

displacement, mm
==}
[}
[a3]

-+

TR
sty
ST
ST

1 il 1 1 1 1 1 1 1
001 002 003 OD4 005 006 007 008 009 01
time, sec

Figure 15.16: Comparison of step responses for all modes included and four modes
included, “mdc” and “elim” “modred” options.

Figure 15.16 shows the overlay of step response for all mode model and “del”
and “mdc” “modred” options. Note that there is no visible difference in the
transient responses.



Chapter 15 SISO State Space MATLAB Model from ANSYS Model

429

15.6.18 Plotting Sorted Modred Reduced Results —

Eliminating Lower dc Gain Modes

reduced elimination: tip disp for mid-length step force, first 4 sorted modes included

20

Magnitude, db mm

-100

L

-120
140 — all modes
—e— reduced elim
-160 p ‘2
10 10

10°
Frequency, hz

Figure 15.17: Cantilever tip displacement for mid-length force, first four sorted modes,

modal truncation, “modred” “del” option.

reduced matched dc gain: tip disp for mid-length step force, first 4 sorted modes included

20 T

o-
-20 ;_—/‘
40

60+

e

-80

Magnitude, db mm

-100 -

-120 -

140 H — all modes
--<— reduced mdc
T

-160 p P
10 10

10°
Frequency, hz

10

10

Figure 15.18: Cantilever tip displacement for mid-length force, first four sorted modes,

“modred” “mdc” option.

Figure 15.17 shows overall frequehcy response with four overlaid individual
mode contributions for the sorted “del” “modred” option, with the six lowest



430 Vibration Simulation Using MATLAB and ANSYS

dc gain modes eliminated. Figure 15.18 shows overall frequency response
with four overlaid individual mode contributions for the unsorted “mdc”
“modred” option, with the six lowest dc gain modes reduced. Again, note the
lack of high frequency attenuation with frequency for the “modred” reduction.

modred cantilever tip disp for mid-length step force, first 4 sorted modes included

D.14 T T T T T T T T
— all modes
01213 —+— reduced - mdc | |
’ 3 —+ reduced - elim
< :
01t B .

o

T

)
i ate]
180

i
A
L

displacement, mm
[ow]
&
1
1

o
[=]
s
Ty
o
ittt
it
i
L

=
=)
L]
+
5N
L

s L L L L L
0ot 002 003 004 005 006 007 008 009 OF
time, sec

Figure 15.19: Comparison of step responses for all modes included and four sorted modes
included, “mdc” and “elim” “modred” options.

Figure 15.19 depicts the overlay of step response for the all mode model and
“del” and “mdc” “modred” options. Note that there is no visible difference in
the transient responses.

15.6.19 Modred Summary

For this problem, where the dc gain of the response is dominated by the first
several modes, there is not much difference between the sorted and unsorted
responses. The “mdc” method minimizes low frequency errors by accounting
for the dc gain of the unused modes but has high frequency behavior which
deviates from the expected, and may not be desirable. The “del” method does
not account for the dc gains of the unused modes, which can result in error in
the low frequency portion of the frequency response. However, the “del”
method has the advantage that it does not exhibit the unusual high frequency
direct transmission matrix related behavior of the “mdc” method. If sorting of
dc gain values is performed prior to the “del” operation, the system dc gain
error may be acceptable while maintaining better high frequency performance.



Chapter 15 SISO State Space MATLAB Model from ANSYS Model 431

15.7 ANSYS Code cantbeam_ss.inp Listing

The ANSYS code cantbeam_ss.inp solves for the eigenvalues and
eigenvectors for a tip-loaded cantilever beam, with a sample output shown in
Section 15.4. The user can define the number of elements to use for the
cantilever and also choose whether to use the “Reduced” or “Block Lanczos”
eigenvalue extraction method. The program then writes a frequency list out to
a “frq” file, outputs eigenvector listings to a “.eig” file and plots
deformed/undeformed mode shapes to “.grp.”

! cantbeam_ss.inp, 0.075 thick x 2 wide x 20mm long steel cant
! title automatically built based on number of elements and eigenvalue extraction method

/prep7

filename = 'cantbeam_ss'

! define number of elements to use

num_eclem = 64

! define eigenvalue extraction method, 1 = reduced, 2 = block 1anczos4
eigext=1

*if,eigext,eq,1, then

pummodes = num_elem ! only 1 displacement dof available for each element
*else
nummodes = 2*num_elem ! both disp and rotation dof's available for
! each element
*endif

! create the file name for storing data
! first section of filename
aname = filename
! second section of filename, number of elements
bname = num_elem
! third section of filename, depends on eigenvalue extraction method
*if eigext,ne,2, then
cname = 'red' ! reduced
*else
cname = 'bl' ! block Lanczos

*endif

! input the title, use %xxx% to substitute parameter name or parametric expression




432 Vibration Simulation Using MATLAB and ANSYS

aname_ti = 'cantbeam_ss - 0.075 thick x 2 wide x 20mm long steel cant'

/title,%aname_ti%, %bname%, %cname%

et,1,4 ! element type for beam
! steel

ex,1,190e6 ! mN/mm”2
dens,1,7.83e-6 ! kg/mm"3
nuxy,1,.293

! real value to define beam characteristics

1,1,0.15,0.05,0.00007031,0.075,0.2 ! area, 1zz, lyy, TKz, TKy
! define plotting characteristics

Iview,1,1,-1,1 !iso view

/angle,1,-60 !iso view

/pnum,mat, 1 ! color by material

/num, 1 ! numbers off

/type,1,0 ! hidden plot

/pbe,all,1 ! show all boundary conditions

csys,0 ! define global coordinate system

! nodes

n,1,0,0,0 ! left-hand node
n,num_elem+1,20,0,0 ‘ ! right-hand node

fill,1,num_elem+1 ! interior nodes

nall
nplo

! elements

type,1

mat, 1

real, 1

e,1,2
egen,num_elem,1,-1

! constrain left-hand end

nall
d,1,all,0 ! constrain node 1, all dof's

! constrain all but uz and roty for all other nodes to allow only those dof's

nall
@l,s,node,,Z,numﬁelemH




Chapter 15 SISO State Space MATLAB Model from ANSYS Model 433

d,all,ux
d,all,uy
d,all,rotx
d,all,rotz

nall
eall
nplo
eplo

PRk Rk Rk Rk Rk eigenvalue run EE2 222223222 22 223

fini ! fini just in case not in begin
/solu ! enters the solution processor, needs to be here to do editing below
allsel ! default selects all items of specified entity type, typically nodes, elements

nsel,s,node,,2,num_elem+1

m,all,uz
*if eigext,eq,1,then v ! use reduced method
antype,modal,new
modopt,reduc,nummodes ! method - reduced Householdert
expass,off ! key = off, no expansion pass, key = on,
! do expansion
mxpand,nummodes,,,no ! nummodes to expand,freq beginning,freq
! ending,elcalc = yes - calculate stresses
total,num_elem,1 ! total masters, 1 is exclude rotations
*elseif,eigext,eq,2 ! use block lanczos
antype,modal,new
modopt,lanb,nummodes ! no total required for block lanczos
! because calculates all eigenvalues
expass,off
mxpand,nummodes,,,no
*endif
allsel
solve ! starts the solution of one load step of a solution sequence, modal here
fini

! plot first mode
/postl
/format,,,,,10000

set,1,1




434  Vibration Simulation Using MATLAB and ANSYS

pldi,1

1 sk dokdok Rk xRk Output ﬁ'eqUCncies *

save,%aname% %bname%%cname%,sav

/output,%aname%%bname%%cname%,frq ! write out frequency list to ascii file .frq
set,list

/output,term . o B ! returns output to terminal

! e sk e ¢ o ok e sk e o ok e e o el ek output eigenvectors e ke e 3k ok *k ok ok kK

! define nodes for output: forces applied or output displacements
nall
/output,%aname%%bname%%cname%,eig ! write out frequency list to ascii file .eig

*do,i,1,nummodes

set,,i C .
/page,,,1000 '
prdisp

*enddo

/output,term

! e sk ok ke ok ok ok ok ok o ok ok ok ofe ko e ok plot modes e 3k e o ok ok e ok ke o sk ok ok ok ok ok
! pldi plots
/show,%aname%%bname%%cname%,grp,0 ! save mode shape plots to file .grp
allsel
fview,1,,-1,, ! side view for plotting
/angle,1,0
/auto
*do,i,1,nummodes
set,1,i
pldi,1

*enddo

/show,term




CHAPTER 16

GROUND ACCELERATION MATLAB
MODEL FROM ANSYS MODEL

16.1 Introduction

This chapter will continue to explore building MATLAB state space models
from ANSYS finite element results. We will use a different cantilever model,
where the cantilever has an additional tip mass and a tip spring all mounted on
a “shaker” base. This model will be a crude approximation of understanding
the effects of disk drive suspension resonances on undesired unloading of the
recording head during external vibration events. The problem shows how to
model ground acceleration forcing functions using ANSYS and MATLAB.
We will also see how to do sorting of modes in the presence of a rigid body
mode. In addition, there is a high frequency mode of the system with a large
dc gain, meaning that if unsorted modal truncation were used to decrease the
model size, the resulting model would have significant error.

L

16.2 Model Description

z Beam Tip Mass N
Spring

/ g

Y
A

Shaker Mass J—/ Cantilever Beam

Shaker Motion

Figure 16.1: Ground displacement model for cantilever with tip mass and tip spring.

The figure above shows a schematic of the system to be analyzed. Once again,
the cantilever is a 2mm wide by 0.075mm thick by 20mm long steel beam. At
the tip, a lumped mass of 0.00002349 Kg is attached. The tip mass was
arbitrarily chosen to have the same mass as the beam. The spring attaching the



436 Vibration Simulation Using MATLAB and ANSYS

beam tip to the shaker has a stiffness of 1e6 mN/mm. The 0.05 Kg shaker
mass was chosen to be approximately 1000 times the mass of the beam and tip
mass combination, making the motions of the shaker insensitive to resonances
of the beam. Thus, we can apply forces to the shaker and excite it to a known
acceleration amplitude. This amplitude will then be transmitted to the base of
the cantilever and the shaker attachment for the beam tip spring — effectively
imparting a “ground acceleration” of any desired amplitude and shape to the
flexible system. Of course, since the shaker body is not constrained, it will
have large rigid body movements, but we are interested in the difference
between the shaker motion and the motion of the tip, so we can ignore the
rigid body motion.

In a disk drive, the cantilever would represent the “suspension,” the small
sheet metal device which supports the recording head, represented by the
beam tip mass. The recording head is typically preloaded onto the disk with
several grams of loading force by pre-bending and then displacing the
suspension. This loading force is required to counteract the force generated by
the air bearing when the disk is spinning, keeping the recording head a
controlled distance from the disk and allowing efficient magnetic recording.
During transportation of the disk drive it is subject to vibration and shock
events in the z direction as indicated by the Shaker Motion arrow. Of course,
vibration and shock occur in all directions, but the z direction is the most
sensitive. In the z direction, the vibration or shock event may be large enough
and have frequency content which will excite the suspension resonances,
generating unloading forces at the head that could cause it to become
momentarily unloaded. When unloaded, the slider will re-approach the disk
and possibly damage the disk. Thus, understanding resonant characteristics of
the suspension and the resulting tendency to unload the head is very important.
Because the frequency content of typical vibration and shock events are less
than several khz, having a good model of the resonant system up to roughly 10
khz is adequate.

16.3 Initial ANSYS Model Comparison —
Constrained-Tip and Spring-Tip Frequencies/Mode Shapes

The spring between the beam tip and the shaker is an artifice, created to allow
measuring the forces between the beam tip and the shaker. If the spring had
infinite stiffness, the tip would become simply supported. The stiffness of the
spring used in the model was chosen to have the frequency of the mode
involving the beam tip and the spring be very high relative to the first bending
mode of the constrained-tip beam. This makes the tip simply supported at
frequencies lower than the beam tip/spring mode and will allow a valid force
measurement in the frequency range of the major beam bending modes.



w

Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 437

There is always a compromise when using a spring artifice to replace a rigid
boundary condition to enable calculating constraint forces. The compromise
is that one would like a very stiff spring to make the model more accurate,
however a very stiff spring would require more modes to be extracted because
the frequency of the tip spring/tip mass mode would be higher. Thus, the
eternal compromise with finite element models: between more accuracy (more
elements) and a shorter time to solve the problem (fewer elements). The
optimal model is always the smallest model which will give acceptable
answers, no more, no less. This balance makes finite elements interesting!

In order to understand the effects of the tip spring on the resonances, we will
use two ANSYS models. The first model will have the tip constrained in the z
direction. The second model will be as described above, but with a tip spring
connected to the shaker. The two models will be compared to ensure that the
tip spring artifice does not significantly effect the major beam bending modes.
The tip constrained model is cantbeam_ss_tip_con.inp, the spring-tip model
is cantbeam_ss_spring_shkr.inp, which is listed at the end of the chapter. A
comparison of resonant frequencies for the two models, each with 16-beam
elements and using the Reduced method for eigenvalue extraction, is shown
below:

Mode Tip Constrained Tip Spring

Freq, hz Freq, hz

1 0.0030932 0.0000

2 654.37 654.36

3 2120.2 % 2120.1

4 4424.1 44233

5 7567.0 7564.6

6 11553. 11547.

7 16392. 16378.

8 22104. 22069.

9 28730. 28590.

10 36346. 32552. Note 32552 is tip/spring mode

11 45079. 36547.

12 55111. 45164.

13 66628. 55171.

14 79548. 66675.

15 92830. 79583.

16 0.10359E+06 92850.

Table 16.1: Resonant frequencies for tip-constrained and spring-tip models.

The table above tells us that there is very good matching of resonant
frequencies for the first 15 modes of the tip-constrained model and the tip
spring model. The 92830 hz (15™) mode differs only 20 hz from the tip spring
model 92850 hz mode. The difference between the two models is that the tip
spring model has an additional mode at 32552 which is the tip spring/tip mass
mode. Having good agreement between the two models up through 32552 hz



438 Vibration Simulation Using MATLAB and ANSYS

means that we will get good results in the 0 to 10 khz range of interest. The
ANSYS Display program can be used to plot the mode shapes of the two
16-element models by loading cantbeaml16red.grp or tipconléred.grp for
the spring-tip or constrained-tip models, respectively. A MATLAB code,
cantbeam_shkr_modeshape.m, can also be used to plot mode shapes for any
of the spring-tip models, with selected modes plotted below for the 16-element
model.

mode shape for 16 element model, mode 1 at 0 hz
5 T T T T

5 1 ! . I !
0 5 10 15 20

distance along beam, mm

Figure 16.2: Rigid body mode, 0 hz.

mode shape for 16 element model, mode 2 at 654.36 hz
5 T T T T

RS SRR~

5 L 1 ! . L L
0 5 10 15 20

distance along beam, mm

Figure 16.3: First bending mode, 654 hz.



Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 439

mode shape for 16 element model, mode 3 at 2120.1 hz

1 T T

5 T

2+ A
3+ i
4+ ]
5 i L L L L

0 5 10 15 20

distance along beam, mm
Figure 16.4: Second bending mode, 2120 hz.
mode shape for 16 element model, mode 10 at 32552 hz

5 - T T o7 r
4 .
3+ i
2r i

° T TN

5 1 1 I | I
0 5 10 15 20

distance along beam, mm

Figure 16.5: Beam tip / Spring mode at 32552 hz.

Note the deflection at the tip involving the spring for mode 10 for the
16-element model. Since we are interested in using the spring deflections to
measure force exerted at the beam tip constraint, we will find that including
the 10" mode is important because of its large dc gain value.



440 Vibration Simulation Using MATLAB and ANSYS

16.4 MATLAB State Space Model from ANSYS Eigenvalue Run —
cantbeam_ss shkr_modred.m

The MATLAB code used in this chapter is very similar to the code in Chapter
15. As such, some of the following descriptions will refer to the previous
chapter.

The results shown and discussed in this chapter will be for the 16-element
beam model; however, ANSYS data is available for 2-, 4-, 8-, 10-, 12-, 16-,
32- and 64-beam elements.

16.4.1 Input

This Section is similar to that in Section 15.6.1, with the same options
available for choosing the number of elements to be analyzed.
Eigenvalue/eigenvector results for all the models are available in the
respective MATLAB .mat files and are called based on which menu item is
picked.

% cantbeam_ss_shkr_modred.m
clear all;
hold off;
clf;
% load the .mat file cantbeamXXred, containing evr - the modal matrix, freqvec -
% the frequency vector and node_numbers - the vector of node numbers for the modal
% matrix

model = menu('choose which finite element model to use ... ", ....
'2 beam elements’, ...
'4 beam elements’, ...
'6 beam elements', ...
'8 beam elements’, ...
'10 beam elements, ...
'12 beam elements', ...
'16 beam elements, ...
'32 beam elements, ...
'64 beam elements');

if model =1

load cantbeam2red_shkr;
elseif model ==

load cantbeam4red_shkr;
elseif model ==

load cantbeamo6red_shkr;
elseif model == 4




Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 441

load cantbeam8red_shkr;
elseif model == N LA
load cantbeam10red_shkr; ) /
elseif model =
load cantbeam12red_shkr;
elseif model ==
load cantbeam16red_shkr;
elseif model =— 8
load cantbeam32red shkr;
elseif model ==9
load cantbeamé64red_shkr;
end

16.4.2 Shaker, Spring, Gram Force Definitions

The value of the beam tip spring stiffness is the same values as in the ANSYS
code and is used to calculate the force between the beam tip and the shaker.
The shaker mass value is the same value as in the ANSYS code and is used to
define the force required in the MATLAB model to impart a desired
acceleration level to the shaker. The force conversion from mN to gram force
is defined as 1/9.807. - .

kspring = 1000000; % mN/mm from ANSYS run
shaker_mass = 0.050; % kg from ANSYS run

mn2gm_conversion = 0.101968; % conversion factor from mn to gram-f, 1/9.807

16.4.3 Defining Degrees of Freedom and Number of Modes

This sectlon of code is identical to that of Sectlon 15 6 2.

% define the number of degrees of freedom and number of modes from size of
% modal matrix

[numdof,num_modes_total] = size(evr);
% define rows for shaker and tip nodes B

shaker node_row =1;

tip_node_row = numdof;

XN = evr;




442  Vibration Simulation Using MATLAB and ANSYS

16.4.4 Frequency Range, Sorting Modes by dc Gain and Plotting,
Selecting Modes Used

As in Section 15.6.3, the next step in creating the model is to sort modes of
vibration so that only the most important modes are kept. Repeating from
Chapter 15 to obtain the frequency response at dc:

Z. m oz .7z
Soy Dt (16.1)

F & o

1

where the dc gain of for the i™ mode is given by the expression:

o)

1

Z. LT :
i mode dc gain: [F—J] = ZoiZui (16.2)

2
k

The difference between the code below and the code in Section 15.6.3 is that
we have a rigid body, 0 hz, mode in this model and the previous cantilever did
not. The problem is in dividing (16.1) by @’ = @ = 0, which would give a
dc gain of infinity for the rigid body mode. In order to get around this, we do
not use zero for the rigid body frequency but instead use the frequency
response lower bound frequency for calculating a “low frequency” gain. In
this model the lower bound frequency is 100 hz. Another method of ranking
would be to rank only the non rigid body modes, recognizing that the rigid
body mode is always included.

Once again, dc gain will be used to rank the relative importance of modes.
The dc gain calculation for each mode, “dc_value,” is broken into two parts.
The first part calculates the gain of the rigid body mode at the “freqlo”
frequency while the second part calculates the dc gain of all the non rigid body
modes.

The bulk of this section is similar to Section 15.6.3.

% calculate the dc amplitude of the displacement of each mode by
% multiplying the forcing function row of the eigenvector by the output row

omega2 = (2*pi*freqvec)."2; % convert to radians and square
% define frequency range for frequency response
freqlo = 100;

freqhi = 100000;




Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 443

flo=log10(freqlo) ;
fthi=log10(freqhi) ;

f=logspace(flo,thi,200) ;
frad=*2*pi ;

dc_gain = abs([xn(shaker_node_row,1)*xn(tip_node_row,1)/(frad(1)"2) ...
(xn(shaker node row,2:num_modes_total) ...
Jxn(tip_node_row,2:num_modes_total))./omega2(2:num_modes_total)]);

[de_gain_sort,index_sort] = sort(dc_gain);
dc_gain_sort = flipir(dc_gain_sort);
index_sort = fliplr(index_sort)
dc_gain_nosort = dc_gain;

index_orig = 1:num_modes_total;

semilogy(index_orig,freqvec,’k-");

title('frequency versus mode number')

xlabel('mode number')

ylabel('frequency, hz")

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

semilogy(index_orig,dc_gain_nosort,'’k-")

title('"dc value of each mode contribution versus mode number')
xlabel(‘'mode number')

ylabel('dc value')

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

loglog([freqlo; freqvec(2:num_modes_total)],dc_gain_nosort,'’k-")
title('dc value of each mode contribution versus frequency')
xlabel('frequency, hz')

ylabel('dc value")

grid

disp(‘execution paused to display figure, "enter" to continue'); pause

semilogy(index_orig,dc_gain_sort,'’k-")

title('sorted dc value of each mode versus number of modes included’)
xlabel('modes included')

ylabel('sorted dc value')

grid

disp(‘execution paused to display figure, "enter” to continue'); pause

num_modes_used = input(['enter how many modes to include, ...
',num2str(num_modes_total),’ default, max ... ']);

if (isempty(num_modes_used))
num_modes _used = num_modes_total;
end




444  Vibration Simulation Using MATLAB and ANSYS

10°-

i

H

frequency, hz
-
[=]
Rl adl s { B Bt

[ RN

+

10°

[RRAni

IR
Ll

— i —

.
o -~
o - -
-
(=3
Iy
N
-
FS
-
3
-
@

mode number

Figure 16.6: Resonant frequency versus mode number for 16-element model.

Figure 16.6 shows the resonant frequency versus mode number for the
16-element model, Reduced method of eigenvalue extraction, showing that
modes six and higher have frequencies greater than the 10 khz frequency range
of interest for this model. This would lead one to think that only the first six
or eight modes would be required to define the force in the 0 to 10 khz
frequency range, which is not the case as we shall see.

- dc value of each mode contribution versus mode number
10 T : T T T T T :

| 1 | 1
4] 2 4 ] 8 10 12 14 16 18
mode number

10 L L I '

Figure 16.7: Low frequency and dc gains versus mode number.



Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 445

Figure 16.7 shows the low frequency gain for the rigid body mode, mode 1,
and the dc gains for all other modes, versus mode number. Note that the
second most important mode (the second highest dc gain) is mode 10, and that
it is even more important than the first bending mode of the cantilever.

dc value

dc value of each mode contribution versus freqtiéncy

10 10° 10 10
frequency, hz

Figure 16.8: Low frequency and dc gain versus frequency.

10

Figure 16.8 shows the same data plotted against fre&fiehcy instead of mode
number. The tip mass / tip spring mode at 32552 hz is the mode with the high

gain.

sorted dc value of each mode versus number of modes included

10 T

sorted dc value

-14

T T T T

! L

10 I 1

1
6 8 10 12 14
modes included

Figure 16.9: Sorted low frequency and dc gains versus number of modes.



446 Vibration Simulation Using MATLAB and ANSYS

In Figure 16.9 we can see the sorted values for the low frequency and dc gains,
from largest to smallest. The list of sorted mode numbers is given in the table
below. Once again, the 10® mode is the second most significant after the rigid
body mode.

index sort= 1 10 2 4 9 8 6 11 3 12 5 13 14 7 15 16 17

Table 16.2: Sorted low frequency and dc gain indices.
16.4.5 Damping, Defining Reduced Frequencies and Modal Matrices

This section is exactly like that in Section 15.6.4.

zeta = input(‘enter value for damping, .02 is 2% of critical (default) ... ");
if (isempty(zeta))
zeta = .02;
end
% all modes included model, use original order
xnnew = xn(:;,(1:num_modes_total});
freqnew = freqvec((1:num_modes_total));
% reduced, no sorting, just use the first num_modes_used modes in xnnew_nosort .
xnnew_nosort = xn(:,1:num_modes_used);
freqnew_nosort = freqvec(l:num_modes_used);
% reduced, sorting, use the first num_modes_used sorted modes in xnnew_sort
xnnew_sort = xn(:,index_sort(1:num_modes_used));

freqnew_sort = freqvec(index_sort(1:num_modes_used));

16.4.6 Setting Up System Matrix “a”

This section is exactly like that in Section 15.6.5.

% define variables for all modes included system matrix, a
w = freqnew*2*pi; % frequencies in rad/sec
w2 =w.A2;

zw = 2*zeta*w;




Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 447

% define variables for reduced, nosorted system matrix, a_nosort
w_nosort = freqnew_nosort*2*pi; % frequencies in rad/sec
w2_nosort =w_nosort."2;
zw_nosort = 2*zeta*w_nosort;
% define variables for reduced, sorted system matrix, a_sort
w_sort = freqnew_sort*2*pi; % frequencies in rad/sec
w2_sort=w_sort."2;
zw_sort = 2*zeta*w_sort;
% define size of system matrix
asize = 2*num_modes_total;
asize_red = 2*num_modes_used; : e
disp(' );
disp(' ");
disp(['size of system matrix a is ',num2str(asize)]);
disp(['size of reduced system matrix a is ',num2str(asize_red)]);
% setup all modes included "a" matrix, system matrix
a = zeros(asize);
for col =2:2:asize
row = col-1;
a(row,col) = 1;
end
for col = 1:2:asize
row = col+1;
a(row,col) = -w2((col+1)/2);
end
for col=2:2:asize
row = col;
a(row,col) = -zw(col/2);

end




448  Vibration Simulation Using MATLAB and ANSYS
% setup reduced, nosorted "a_nosort" matrix, system matrix
a_nosort = zeros(asize _red);
for col=2:2:asize red
row = col-1;
a_nosort(row,col) = 1;
end i e
for col = 1:2:asize_red
row = col+1; A .
a_nosort(row,col) = -w2_nosort((col+1)/2);
end
for col =2:2:asize_red
row = col;
a_nosort(row,col) = -zw_nosort(col/2);
end
% setup reduced, sorted "a_sort" matrix, system matrix

a_sort = zeros(asize_red);
for col =2:2:asize_red
row = col-1;
a_sort(row,col) = 1;

end

for col = 1:2:asize red
row = col+1;
a_sort(row,col) = -w2_sort((col+1)/2);
end

for col =2:2:asize red
row = col;

a_sort(row,col) = -zw_sort(col/2);




Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 449

end

16.4.7 Setting Up Matrices “b,” “c” and “d”

The only difference between this section and Sections 15.6.6 and 15.6.7 is in
defining the force to be applied to the shaker to give 1g acceleration.

% setup input matrix b, state space forcing function in principal coordinates
% f physical is the vector of physical force
% zeros at each output DOF and input force at the input DOF

f physical = zeros(numdof;1); % start out with zeros

f physical(shaker_node_row)=9807*shaker mass*1.0; % input force at shaker, 1g
% now setup the principal force vector for the three cases, all modes, nosort, sort
% f principal is the vector of forces in principal coordinates
f_principal = xnnew'*{ physical;
% b is the vector of forces in principal coordinates, state space form
b = zeros(2*num_modes_total,1);
for cnt = 1:num_modes_total
b(2*cnt) = f_principal(cnt);
end
% f principal nosort is the vector of forces in principal coordinates
f_principal_nosort = xnnew_nosort'*{ physical,
% b_nosort is the vector of forces in principal coordinates, state space form
b_nosort = zeros(2*num_modes_used, 1);
for cnt = l:num_modes_used
b_nosort(2*cnt) = f_principal_nosort(cnt);
end
% f principal_sort is the vector of forces in principal coordinates
f_principal_sort = xnnew_sort'*f_physical;

% b_sort is the vector of forces in principal coordinates, state space form




450 Vibration Simulation Using MATLAB and ANSYS

%
%
%
%

%

%

b_sort = zeros(2*num_modes_used, 1);
for cnt = 1:num modes_used
b_sort(2*cnt) = {_principal_sort(cnt);
end
setup cdisp and cvel, padded xn matrices to give the displacement and velocity
vectors in physical coordinates
cdisp and cvel each have numdof rows and alternating columns consisting of columns
of xnnew and zeros to give total columns equal to the number of states
all modes included cdisp and cvel
for col = 1:2:2*length(freqnew)
for row = l:numdof
cdisp(row,col) = xnnew(row,ceil(col/2));
cvel(row,col) = 0;
end
end
for col = 2:2:2*length(freqnew)
for row = 1:numdof
cdisp(row,col) = 0;
cvel(row,col) = xnnew(row,col/2);
end
end
reduced, nosorted cdisp and cvel
for col = 1:2:2*]ength(freqnew_nosort)
for row = 1:numdof
cdisp_nosort(row,col) = xnnew_nosort(row,ceil(col/2));
cvel_nosort(row,col) = 0;
end
end

for col =2:2:2*length(freqnew_nosort)




Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 451

for row = l:numdof
cdisp_nosort(row,col) = 0;
cvel_nosort(row,col) = xnnew_nosort(row,col/2);
end
end
% reduced, sorted cdisp and cvel
for col = 1:2:2*length(freqnew_sort)
for row = l:numdof
cdisp_sort(row,col) = xanew_sort(row,ceil(col/2)); =~ -~
cvel_sort(row,col) = 0;
end
end
for col = 2:2:2*length(ﬁe§n;;_son)
for row = 1:numdof
cdisp_sort(row,col) = 0; . e d eeitglS
cvel_sort(row,col) = xnnew_sort(row,col/2);
end
end
% define output

d=[0]; % : LR SEab

16.4.8 “ss” Setup, Bode Calculations

This section differs from that of Section 15.6.8 in that the frequency range
definition that exists in 15.6.8 was moved earlier in this code to allow the use
of “freqlo” to calculate the low frequency gain of the rigid body mode. Also,
the “ss” model below for “sysforce” directly calculates the force in the spring
by subtracting the displacement of the shaker from that beam tip and
multiplying the difference by the spring stiffness and the mN to gram force
conversion. The output then indicates the variation of force between the beam
tip and the shaker, or for the disk drive the variation in force which is




452  Vibration Simulation Using MATLAB and ANSYS

preloading the recording head to the disk. If the variation in force exceeds the
preload force, the head will tend to unload.

%

%

%

%

define tip force state space system with the "ss" command

sysforce = ss(a,b,mn2gm_conversion*kspring*(cdisp(tip_node_row,:)- ...
cdisp(shaker node row,:)),d);

define reduced system using nosort modes

sysforce_nosort = ss(a_nosort,b_nosort,mn2gm_conversion*kspring* ...
(cdisp_nosort(tip_node_row,:)-cdisp_nosort(shaker node row,:)),d);

define reduced system using sorted modes 4

sysforce sort =ss(a_sort,b_sort;mn2gm _ conversion*kspring* ...
(cdisp_sort(tip_node_row,:)-cdisp_sort(shaker node_row,:)),d);

use "bode" command to generate magnitude/phase vectors
[magforce,phsforce] = bode(sysforce, frad);
[magforce_nosort,phsforce_nosort] = bode(sysforce_nosort,frad);

[magforce_sort,phsforce_sort] = bode(sysforce_sort,frad);

16.4.9 Full Model — Plotting Frequency Response, Shock Response

The code in this section is similar to that in Section 15.6.9, where the overall
frequency response and its individual mode contributions are plotted. The
“Isim” command is used to calculate the response to a half-sine shock pulse.

%

%

start plotting

if num_modes_used = num_modes_total

plot all modes included response

loglog(f,magforce(1,:),'k.-") i

title(['cantilever tip force for mid-length force, all ',num2str(num_modes_used), ...
' modes included'])

xlabel('Frequency, hz')

ylabel('Force, gm')

grid on

disp(‘execution paused to display figure, "enter” to continue'); pause

hold on

max_modes_plot = num_modes_used;

for pent = 1:max_modes_plot




Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 453

index = 2*pent;

amode = a_nosort(index-1:index,index-1:index);
bmode = b_nosort(index-1:index);

cmode_shaker = cdisp_nosort(1 ,indéx;l :index);
cmode_tip = cdisp_nosort(numdof,index-1:index);
dmode = [0]; S e

sysforce_mode = ss(amode,bmode,mn2gm_conversion*kspring* ...
(cmode_tip - cmode_shaker),dmode);

[magforce_mode,phsforce_mode]=bode(sysforce_mode,frad) ;
loglog(f,magforce_mode(1,:),'’k-")
end
disp(‘execution paused to display figure, "enter" to continue'); pause
hold off
% now use Isim to calculate force due to a 0.002 sec half-sine 100g shock pulse
ttotal = 0.03;
shock_amplitude = 100;
pulse_width = input(‘enter half-sine shock pulse width, sec, default is 0.002 ... ");
if isempty(pulse width)
pulse_width = 0.002;
end
t = linspace(0,ttotal, 1000);
dt=1(2) - t(1);
for cnt = l:length(t)
if t(cnt) < pulse_width
u(cnt) = shock_amplitude*sin(2*pi*(1/(2*pulse_width))*t(cnt)),
else
u(cent) = 0;
end

end




454  Vibration Simulation Using MATLAB and ANSYS

plot(t,u,'’k-"

title(‘acceleration of shaker mass")

xlabel('time, sec')

ylabel("acceleration, g')

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

[force,ts] = Isim(sysforce,u,t);

plot(ts,force,'k-")

title(['cantilever tip force for ',num2str(shock_amplitude),'g, ',num2str(pulse_width) ...
, sec input, all ', num2str(num_modes_used),' modes included'])

xlabel('time, sec')

ylabel("Force, gm")

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

peak_force = max(abs(force))

Plots for the 16-beam element model are shown below.

cantilever tip force for mid-length force, all 17 modes included

Frequency, hz
Figure 16.10: Overall frequency response with overlaid individual mode contributions.

Figure 16.10 shows the overall frequency response with overlaid individual
mode contributions for all 16 modes. Note the significant dc gain of the 32
khz beam tip/spring mode, which is higher than even the first bending mode dc
gain. One can imagine how the overall response would be changed if the 32
khz mode were not included. Without the dc gain of the mode, the overall dc
gain would be significantly in error.




Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 455

. acceleration of shaker mass
100 T T T - T

80

T

70

acceleration, g
8

40

20

0 . . . L .
0 0.005 0.01 0.015 0.02 0.025 0.03
time, sec

Figufe 16.11: Acceleration versus time for the 100g, 2msec shock pulse applied to the
system.

Figure 16.11 shows the acceleration versus time profile that is applied to the
shaker body.

cantilever tip force for 1009 0.002 sec input, all 17 modes included

0.5
or \/\A/V\/\/\/\/\/\M’\/“
-0.5 J
R . J
E-15 ‘
@
g 2 i
w R
25+ i
3l ]
=35+ ’ : -
\
0 0.005 0. 01 0. 015 0. 02 0 025 0.03

time, sec

Figure 16.12: Force in the spring versus time, reflecting the change in preload force
applied to the head.

For the shock pulse in Figure 16.11, the force in the spring versus time is
shown in Figure 16.12. If the preload force were 3 gm, the head would be in



456  Vibration Simulation Using MATLAB and ANSYS

danger of unloading from the disk since the peak variation in preload force is
3.6 gm.

16.4.10 Reduced Models — Plotting Frequency Response, Shock Response

This section is similar to Section 15.6.10, setting up frequency response and
half-sine shock response for sorted and unsorted modes.

else
% unsorted modal truncation
loglog(f,magforce(1,:),'k-',f,magforce nosort(1,:),’k.-")
title(['unsorted modal truncation: cantilever tip force for mid-length force, ...
first ', num2str(num_modes_used),' modes included'])
legend(‘all modes','unsorted partial modes',3)
dcgain_error_percent_nosort = 100*(magforce _nosort(1) - magforce(1))/magforce(1)
xlabel('Frequency, hz')
ylabel('Force, gm")
grid on
disp(‘execution paused to display figure, "enter" to continue'); pause
hold on
max_modes_plot =num_modes_used;
for pent = 1:max_modes_plot
index = 2*pent;
amode = a_nosort(index-1:index,index-1:index);
bmode = b_nosort(index-1:index);
cmode_shaker = cdisp_nosort(1,index- 1:index);
cmode_tip = cdisp_nosort(numdof,index-1:index);
dmode = [0];

sysforce_mode = ss(amode,bmode,mn2gm_conversion*kspring* ...
(cmode_tip - cmode_shaker),dmode);

[magforce_mode,phsforce_mode]=bode(sysforce_mode,frad) ;
loglog(f,magforce_mode(1,:),'’k-")
end

disp('execution paused to display figure, "enter" to continue'); pause




Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 457

%

%

%

hold off
sorted modal truncation
loglog(f,magforce(1,:),'’k-'.f,magforce_sort(1,:),'%.-")
title(['sorted modal truncation: cantilever tip force for mid-length force, ...
first ',num2str(num_modes_used),' modes included'])
legend('ali modes','sorted partial modes',3)
dcgain_error_percent_sort = 100*¥(magforce_sort(1) - magforce(1))/magforce(1)
xlabel('Frequency, hz')
ylabel("Force, gm')
grid on
disp(‘execution paused to display figure, "enter" to continue'); pause
hold on
now plot the overlay of the tip force magnitude with eaéh mode contribution
max_modes_plot = num_modes_used; s,
for pent = 1:max_modes_plot
index = 2*pcnt;
amode = a_nosort(index-1:index,index-1:index);
bmode = b_nosort(index-1:index);
cmode_shaker = cdisp_nosort(1,index-1:index);
cmode_tip = cdisp_nosort(numdof,index-1:index);
dmode = [0];

sysforce_mode = ss(amode,bmode,mn2gm_conversion*kspring* ...
(cmode_tip - cmode_shaker),dmode);

[magforce_mode,phsforce_mode]=bode(sysforce_mode,frad) ;
loglog(f,magforce_mode(1,:),’k-") )
end
disp(‘execution paused to display figure, "enter" to continue'); pause
hold off

now use Isim to calculate force due to a 0.002 sec half-sine 100g shock pulse

ttotal = 0.03;




458 Vibration Simulation Using MATLAB and ANSYS

shock amplitude = 100;
pulse_width = input(’enter half-sine shock pulse width, sec, defanlt is 0.002 ... );

if isempty(pulse_width)
pulse_width = 0.002;

end

t = linspace(0,ttotal,1000);

dt=1(2) - t(1);

for cnt = l:length(t)

if t(cnt) < pulse_width

u(cnt) = shock_amplitude*sin(2*pi*(1/(2*pulse_width))*t(cnt));

else
u(cnt) =0;
end

end

plot(t,u,'’k-")

title("acceleration of shaker mass'’)

xlabel('time, sec')

ylabel("acceleration, g')

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

[force,ts] = Isim(sysforce,u,t);
[force_nosort,ts_nosort] = Isim(sysforce_nosort,u,t);
[force_sort,ts_sort] = Isim(sysforce_sort,u,t);

plot(ts,force,'’k-',ts_nosort,force_nosort,k+:'ts_sort,force sort,’k.-")

title(['cantilever tip force for ',num2str(shock_amplitude),'g, ',num2str(pulse_width) ...
,' sec input, ', num2str(num_modes_used),' modes included'])

legend('all modes','unsorted partial modes','sorted partial modes',4)

xlabel('time, sec')

ylabel('Force, gm')

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

max_force = max(abs(force));

max_force_nosort = max(abs(force_nosort));
max_force_sort = max(abs(force_sort));

error_nosort_percent = 100*(max_force_nosort - max_force)/max_force
error_sort_percent = 100*(max_force_sort - max_force)/max_force




Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 459

16.4.11 Reduced Models — Plotted Results, Four Modes Used

Note that in all the frequency response plots that follow, the title will indicate
that “four” modes are included, the four being the rigid body mode at 0 hz and
the first three either sorted or unsorted resonances. Because we are
subtracting the displacement of the tip from the displacement of the shaker to
find the force in the spring, the rigid body mode is effectively subtracted out,
allowing us to see the detailed motion of the beam/mass relative to the shaker.
This is why the rigid body mode does not show up as one of the four
individual modes used.

unsoorted modal truncation: cantilever tip force for mid-length force, first 4 modes included

A

L > \
\\\

107k

— all modes
—e— unsorted partial modes
1

10° 10° 10* 10°
Frequency, hz

Figure 16.13: Overall plus individual mode contributions for the four unsorted mode
model.

In Figure 16.13 the first four unsorted modes are used, so the 32 khz beam tip
mode is not included and the overall response is poor. Both the dc gain and
high frequency behavior are badly in error. The dc gain error is 75%.



460 Vibration Simulation Using MATLAB and ANSYS

sod'ted modal truncation: cantilever tip force for mld-length force, first 4 modes included

m-i.) &< J\

g 10
o
g
S 10 4
10°L .
10°L 4
— all modes
—e— sorted partial modes
107 ' ;

10° 10° 10* 10
Frequency, hz

Figure 16.14: Overall plus individual mode contributions for the four sorted mode model.

In Figure 16.14 the 32 khz beam tip mode is one of the included modes. Both
the overall dc gain and high frequency behavior are quite good matches with
the “all modes included” model with only four modes included. The dc gain
error is ~6.2%.

cantilever tip force for 100g, 0.002 sec input, 4 modes included

0.5 T T T

E 15H

Force, g

—— all modes
35—, —— unsorted partial modes |7
—— sorted partial modes
4 . . \
4] 0.005 0.01 0.015 0. 02 0.025 0.03

time, sec

Figure 16.15: Half-sine shock pulse response for full, reduced unsorted and reduced sorted
models.



Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 461

Figure 16.15 shows the how the dc gain error in the frequency domain for the
unsorted model shows up as a significant error in peak response in the time
domain, 67%. The error in the sorted peak response is only 5.6%.

16.4.12 Modred — Setting up, “mdc” and “del” Reduction,

Bode Calculations

In this section the user is prompted for whether to use the sorted or original
mode order, then the corresponding system matrices are defined. The
“modred” command is used with both the “mdc” and “del” options to define
two reduced systems. The “bode” command is used to calculate frequency
responses.

%

%

%

use modred to reduce, select whether to use sorted or unsorted modes for the reduction

modred_sort = input('modred: enter "1" to use sorted modes for reduced runs, ...
"enter" to use unsorted ... );

if isempty(modred_sort)
modred_sort =0

end
if modred_sort == % use sorted mode order
xnnew = xn(:,index_sort(1:num_modes_total)); e
freqnew = freqvec(index_sort(1 :num_modes_total));
else % use original mode order
xnnew = xn(:,(1:num_modes_total));
freqnew = freqvec((1:num_modes_total));
end

define variables for all modes included system matrix, a

w = freqnew*2*pi; % frequencies in rad/sec
w2 =w."2;

zw = 2%zeta*w;

setup all modes included "a" matrix, system matrix

a = zeros(asize);

for col =2:2:asize

row = col-1;




462  Vibration Simulation Using MATLAB and ANSYS

%

%
%

%

%

%

%
%
%
%

%

a(row,col) = 1;

end

for col = 1:2:asiée

row = col+1;

a(row,col) = -w2((col+1)/2);
end

for col =2:2:asize

row = col; '
a(row,col) = -zw(col/2);

end

setup input matrix b, state space forcing function in principal coordinates

f_physical is the vector of physical force
zeros at each output DOF and input force at the input DOF

f_physical = zeros(numdof, 1); % start out with zeros
f_physical(shaker node row) = 9807*shaker mass*1.0; % input force at shaker, 1g
now setup the principal force vector for the three cases, all modes, nosort, sort
f_principal is the vector of forces in principal coordinates
f_principal = xnnew'*{ physical;
b is the vector of forces in principal coordinates, state space form
b = zeros(2*num_modes_total,1);
for cnt = l:num_modes_total

b(2*cnt) = f principal(cnt);
end
setup cdisp and cvel, padded xn matrices to give the displacement and velocity
vectors in physical coordinates
cdisp and cvel each have numdof rows and alternating columns consisting of columns
of xnnew and zeros to give total columns equal to the number of states
all modes included cdisp and cvel
for col = 1:2:2*length(frequew)

for row = L:numdof




Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 463

%

%

%

%

%

%

cdisp(row,col) = xnnew(row,ceil(col/2});
cvel(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew)

for row = 1:numdof

cdisp(row,col) = 0;

cvel(row,col) = xnnew(row,col/2);

end

end

define output
d=[0]; %

define state space system for reduction, ordered defined by modred_sort

sysforce red = ss(a,b,mn2gm_conversion*kspring*(cdisp(tip_node_row,:)- ...
cdisp(shaker_node_row,:)),d);

define reduced matrices using matched dc gain method "mdc”

states_elim = (2*num_modes_used+1):2*num_modes_total;

sysforce_mdc = modred(sysforce_red,states_elim,'mdc'); »
[aforce_mdc,bforce_mdc,cforce_mde,dforce_mdc] = ssdata(sysfo;'ce_mdc);
define reduced matrices by eliminating high frequency states, 'del’
sysforce_elim = modred(sysforce_red,states_elim,'del’);
[aforce_elim,bforce_elim,cforce_elim,dforce_elim] = ssdata(sysforce_elim);
use "bode" command to generate magnitude/phase vectors for reduced systems
[magforce_mdc,phsforce_mdc]=bode(sysforce_mdc,frad) ;
[magforce_elim,phsforce_elim]=bode(sysforce_elim,frad) ;

convert magnitude to db

magforce_mdcdb = 20*log10(magforce_mdc);

magforce_elimdb = 20*log10(magforce_elim);




464 Vibration Simulation Using MATLAB and ANSYS

16.4.13 Reduced Modred Models — Plotting Commmands

Both the “del” and “mdc” reduced systems are plotted and compared with the
original, non-reduced system. The individual mode contributions to the two
reduced responses are also plotted.

% start plotting
% modred using 'elim'
loglog(f,magforce(1,:),’k-',f,magforce_elim(1,:),'k.-"

if modred sort=1
title(['reduced elimination: cantilever tip force for mid-length force, ...
first ',num2str(num_modes_used)," sorted modes included'])
degain_error_percent_elim_sort = 100*(magforce_elim(1) ...
- magforce(1))/magforce(l)

else
title(['reduced elimination: cantilever tip force for mid-length force, ...
first ,num2str(num_modes_used), unsorted modes included'])
dcgain_error_percent_elim_nosort = 100*(magforce_elim(1) ...
- magforce(1))/magforce(1)
end

legend('all modes','reduced elimination',3)
xlabel("Frequency, hz')
ylabel('Force, gm')
grid on
disp('execution paused to display figure, "enter" to continue'); pause
hold on
max_modes_plot = num_modes_used;
for pent = 1:max_modes_plot
index = 2*pcnt;
amode = aforce_elim(index-1:index,index-1:index);
- bmode = bforce_elim(index-1:index);
cmode = cforce_elim(1,index-1:index);
dmode = [0];
sysforce_mode = ss(amode,bmode,cmode,dmode);
[magforce_mode,phsforce_mode]=bode(sysforce_mode,frad) ;

loglog(f,magforce_mode(1,:),'’k-")




Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 465

%

end
disp(‘execution paused to display figure, "enter" to continue'); pause
hold off
modred using ‘mdc'
loglog(f,magforce(1,:),’k-',f,magforce_mdc(1,:),'’k.-")
if modred_sort ==
title(['reduced matched dc gain: cantilever tip force for mid-length ...
force, first ,num2str(num_modes_used),’ sorted modes included'])

dcgain_error_percent_mdc_sort = 100*(magforce_mdc(1) ...
- magforce(1))/magforce(1)

else
title(['reduced matched dc gain: cantilever tip force for mid-length ...
f orce, first ,num2str(num_modes_used),’ unsorted modes included'])
degain_error_percent_mdc_nosort = 100*(magforce_mde(1) ...
- magforce(1))/magforce(1)
end

legend(‘all modes','reduced mdc',3)

xlabel('Frequency, hz')
ylabel('Force, gm') RS
grid on
disp(‘execution paused to display figure, "enter” to continue’); pause
hold on
max_modes_plot = num_modes_used;
for pent = 1:max_modes_plot
index = 2*pent; ‘f
amode = aforce_mdc(index-1:index,index-1:index);
bmode = bforce_mdc(index-1:index);
cmode = cforce_mdc(],index-1:index);
dmode = [0];
sysforce_mode = ss(amode,bmode,cmode,dmode);
[magforce_mode,phsforce_mode]=bode(sysforce_mode,frad) ;

loglog(f,magforce_mode(l,:),'k-")

end




466 Vibration Simulation Using MATLAB and ANSYS

disp(‘execution paused to display figure, "enter" to continue'); pause
hold off
% now use lIsim to calculate force due to a 0.002 sec half-sine 100g shock pulse
[force_mdc,ts mdc] = Isim(sysforce_mdc,u,t);
[force_elim,ts_elim] = Isim(sysforce_elim,u,t);
plot(ts,force,'’k-',ts_mdc,force_mdc,'k.-\ts_elim,force_elim,'k+-")
if modred_sort ==
title(['modred cantilever tip force for ',num2str(shock_amplitude),'g, ...

" num2str(pulse_width) ,' sec input, ',num2str(num_modes_used), ...
' sorted modes included'])

else
title(['modred cantilever tip force for ',num2str(shock amplitude),'g, ...
'num2str(pulse_width) ,' sec input, ',num2str(num_modes_used), ...
' unsorted modes included'])
end

legend('all modes','reduced - mdc','reduced - elim',4)

xlabel('time, sec')

ylabel('Force, gm')

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

max_force_mdc = max(abs(force_mdc));
max_force elim = max(abs(force_elim));

peak_error_mdc_percent = 100*(max_force_mdc - max_force)/max_force
peak_error_elim_percent = 100*(max_force_elim - max_force)/max_force

end

16.4.14 Plotting Unsorted Modred Reduced Results —
Eliminating High Frequency Modes

This section looks at how well “modred” performs when unsorted modes are
used. We will see that the “del” option using the first four unsorted modes
does a poor job of matching the original response while the “mdc” option
using the same four unsorted modes does a good job of matching the lower
frequency range of the response while missing the tenth mode resonance. The
overall transient response of the system is matched well by the “mdc” option
while the “del” option has significant error.




Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 467

redu%ed elimination: cantilever tip force for mid-tength force, first 4 unsorted modes included
0 - i

107"

107k

— all modes
—e— reduced elimination ~J
.

10-7 v 3 : 4
10° 10 10 10°

Frequency, hz

Figure 16.16: Overall frequency response with overload individual mode contributions for
unsorted “del” modred option, with the 12 highest frequency modes eliminated.

Figure 16.16 displays the same response as the “unsorted” plot in Figure 16.13
because the “del” option in modred and our simple modal truncation method
are equivalent. The dc gain is in error by 75%.

reducedomatched dc gain: cantilever tip force for mid-length force, first 4 unsorted modes included
10 .

T T T

— all modes . oG

, 1| === reduced mdc \ﬂ
LT .

2 3 4 5

10 10 10 10
Frequency, hz

Figure 16.17: Overall frequency response with overlaid individual mode contributions for
unsorted “mdc” modred option, with the 12 highest frequency modes reduced.



468 Vibration Simulation Using MATLAB and ANSYS

In Figure 16.17, the dc error is very small, 0.0008%. Even though the 32 khz
mode is not included, the gain in the portion from 1 to 20 khz is close to the
full model gain.

modred cantilever tip force for 100g, 0.002 sec input, 4 unsorted modes included
0.5

Force, gm

it ‘ |
— all modes
3.5 —e— reduced - mdc |7
’ ’ —— reduced - elim

|

0 0.005 0.01 0.015 0.02 0.025 0.03
time, sec

Figure 16.18: Half-sine shock pulse response for full, reduced unsorted “mdc” and reduced
unsorted “del” models.

Figure 16.18 shows that the effect of the dc gain error in the frequency domain
for the unsorted model shows up as a significant error in peak response in the
time domain, 67%. The error in the unsorted peak response is only 0.09% for
the “mdc” reduction.

16.4.15 Plotting Sorted Modred Reduced Results —
Eliminating Lower dc Gain Modes

This Section repeats the analysis of the previous Section but the sorted modes
are used, retaining the higher dc gain modes. Since the important tenth mode
is included in the retained sorted modes, we would expect that the reduced
responses would match the original, all modes included response.



Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 469

md%ced elimination: cantilever tip force for mid-length force, first 4 sorted modes included
10 : T

PE—— R e — .

-1

— all modes
S reduced elimination
" T 1

10° 10° 10

Frequency, hz

Figure 16.19: Overall frequency response with overload individual mode contributions for
sorted “del” modred option, with the 12 lowest dc gain modes eliminated.

Figure 16.19 shows the same response as the “sorted” plot in Figure 16.14
because the “del” option in modred and our simple sorted modal truncation
methods are equivalent. The dc gain is in error by 6.2%.

reduceod matched dc gain: cantilever tip force for mid-length force, first 4 sorted modes included
1

T T -y

10 & _ E
— all modes
2L reduced mdc
10 - L L
10° 10° 10 10°
Frequency, hz

Figure 16.20: Overall frequency response with overload individual mode contributions for
sorted “mdc” modred option, with the 12 lowest dc¢ gain modes eliminated.

Note the high frequency discrepancy in Figure 16.20, related to using the
“mdc” modred option. For this problem, which is dominated by the low



470 Vibration Simulation Using MATLAB and ANSYS

frequency (<10khz) response and the dc gain of the 32 khz mode, the high
frequency response is not important. The dc gain is in error by only 0.0025%.

modred cantilever tip force for 100g, 0.002 sec input, 4 sorted modes included

05— T - T T
i
-0.5 b
R 4
E s
3
5§ - |
('S
-2.51% 3 4
3 4
— all modes
-3.5- —e— reduced - mdc |7
. —+ reduced - elim
4l \ | : . I—
[} 0.005 0.01 0.015 0.02 0.0256 0.03

time, sec

Figure 16.21: Half-sine shock pulse response for full, reduced unsorted and reduced sorted
models.

The errors in peak response are 5.6% for the “del” method and 0.0773% for
the “mdc” method.



Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 471

16.4.16 Model Reduction Summary

Reduction Dc gain Peak
Method error, error, Comments
Used percent percent
This case should show the worst error because the 32
Nosort 75.45 67 khz beam tip/spring mode is not included in the lowest
four frequency modes.
The modred “del” option is the same as the “nosort”
Nosort, 75.45 - 67 case because it just eliminates (truncates) the twelve
elim highest frequency modes.
Sorting for dc gain with four modes includes the 32
Sort 6.19 5.61 khz mode, so the dc gain error is reduced. However, it
still contains errors because the dc gain terms from the
12 unused modes are not included.
The modred “del” option is the same as the “sort” case
Sort, elim 6.19 5.61 because it just eliminates (truncates) the twelve lowest
dc gain modes.
The modred “mdc” option, even though it does not use
Nosort, 0.0007 0.0913 the 32 khz mode, takes its dc gain into effect, resulting
mde in the small dc gain error. Because the frequency
content of the shock pulse is low (~250 hz), the low
frequency portion of the overall transfer function
dominates the accuracy of the shock response.
Sorting the modes before reducing does not have a
Sort, mdc 0.0025 0.0773 significant effect on the dc gain because the “mdc”

operations take into account the de gain effects of the
unused modes.

Table 16.3: Summary of model reduction methods used, ranked from highest to lowest

errors, with comments about each method.

Table 16.3 shows that using the modred “mdc,” (“matched dc gain”) method is
the preferred method for this problem to obtain accurate results. For results
that have accuracy in the 5 to 6% range, sorting by dc gain and then removing
the lower dc gain modes is another available approach. It is clear that
arbitrarily truncating high frequency modes can lead to significant errors




472  Vibration Simulation Using MATLAB and ANSYS

because a single, important mode is neglected. Another source of error would
occur if the ANSYS model had not included enough elements (modes) to take
into account the beam tip mode or if a selected range of eigenvalues had not
included the mode.

In summary, every model reduction problem provides new challenges and
needs to be analyzed before making a decision about which reduction method
is most appropriate.

16.5 ANSYS Code cantbeam_ss_spring_shkr.inp Listing

The ANSYS code in this section is similar to the code cantbeam_ss.inp in
Section 15.7 with the exception that a tip spring and “shaker” mass are added.

! cantbeam_ss_spring_shkr.inp, 0.075 thick x 2 wide x 20mm long steel cant with tip

! mass and spring on shaker, shaker mass at cantilever base and coupled to spring ground
! title automatically built based on number of elements and eigenvalue extraction method
/prep7

filename = 'cantbeam_ss_spring_shkr'

! define number of elements to use

num_elem = 10

! define eigenvalue extraction method, 1 = reduced, 2 = block lanczos

eigext =2

*if eigext,eq,1, then

nummodes = num_elem+1 ! only 1 displacement dof available for
each element
*else
nummodes = 2*(num_elem+1) ! both disp and rotation dof's available for each
! clement
*endif

! create the file name for storing data

! first section of filename

aname = 'cantbeam’

! second section of filename, number of elements
bname = num_elem

! third section of filename, depends on eigenvalue extraction method




Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 473

*if eigext,ne,2, then

cname = "red' ! reduced
*else

cname = 'bl' ! block Lanczos
*endif

! input the title, use %xxx% to substitute parameter name or parametric expression
aname_ti = 'cantbeam’

ftitle,%aname _ti%, %bname%, %cname%, spring tip

et, 1,4 ! element type for beam

et,2,14 ! element type for spring

et,3,21 ! element type for mass

! steel

ex,1,190e6 ! mN/mm”2

dens,1,7.83e-6 ! kg/mm~"3

nuxy,1,0.293

! real value to define beam characteristics

1,1,0.15,0.05,0.00007031,0.075,0.2 ! beam properties: area, Izz, Iyy, TKz, TKy
1,2,1000000 ! spring stiffness, mN/mm
1,3,0.00002349,0.00002349,0.00002349 ! mass at tip, Kg

1,4,0.050,0.050,0.050 ! shaker mass, Kg, approximately 1000 times mass

! define plotting characteristics

fview,1,1,-1,1 ! iso view

/angle,1,-60 !iso view

/pnum,mat, 1 ! color by material

/mum, 1 ! numbers off

/type,1,0 ! hidden plot

/pbe,all,1 ! show all boundary conditions

csys,0 ! define global coordinate system
! nodes

n,1,0,0,0 : ! left-hand node
n,num_elem+1,20,0,0 ! right-hand node
fill,1,num_elem+1 ! interior nodes
n,num_elem+2,20,0,-3 ! spring connection node
nall

nplo

! elements

! beam




474  Vibration Simulation Using MATLAB and ANSYS

type,1

mat,1

real,1

e,1,2
egen,num_elem,1,-1

! spring at tip

type,2
real,2
e,num_elem+1,num_elem+2

! mass at tip

type,3
real,3
e,;num_elem+1

! shaker mass

type,3
real,4
el

! couple mass and spring end

nall

d,1,ux,0 ! constrain all except uz for node 1
d,1,uy,0

d,1,rotx,0

d,1,roty,0

d,1,rotz,0

d,num_elem+2,ux,0 ! constrain all except uz for spring end node
d,num_elem+2,uy,0

d,num_elem+2,rotx,0

d,num_elem+2,roty,0

d,num_elem+2,rotz,0

! d,1,uz,0
cp,l,uz,1,num_elem+2 ! uz couple shaker mass and spring end node
! constrain all but uz and roty for all other nodes to allow only those dof's

nall
nsel,s,node,,2,num_elem+1
d,all,ux

d,all,uy

d,all,rotx

d,all,rotz

nall
eall




Chapter 16 Ground Acceleration MATLAB Model from ANSYS Model 475

nplo
eplo

1 Rk kok KRR KRR KX eigenvalue run kEFEkkRkdkkkokdok Rk ¥

fini ! fini just in case not in begin
/solu ! enters the solution processor, needs to be here to do editing below
allsel ! default selects all items of specified entity type, typically nodes, elements

nsel,s,node,,2,num_elem+1

m,alluz
*if,eigext,eq,1,then ! use reduced method
antype,modal,new
modopt,reduc,nummodes ! method - reduced Householder, nummodes —
! no to extract
expass,off ! key = off, no expansion pass, key = on, do expansion
mxpand,nummodes,,,no ! nummodes to expand,freq beginning, freq
! ending,elcalc = yes - calculate stresses
total,nummodes, 1 ! total masters, 1 is exclude rotations
*elseif,eigext,eq,2 ! use block lanczos
antype,modal,new
modopt,lanb,nummodes ! no total required for block lanczos because
! calculates all eigenvalues
expass,off
mxpand,nummodes,,,no
*endif
allsel
solve ! starts the solution of one load step of a solution sequence, modal here
fini
! plot first mode
/postl

/format,,,,,10000
set,1,1

pldi, 1

! output frequencies

save,%aname%%bname%%cname%o,sav




476 Vibration Simulation Using MATLAB and ANSYS

set,list

/output, term ! returns output to terminal

! 2k ofe ok ofc o s ke s oe o o 3 afe ol e ol e o ok ok ok Output eigenvectors ok ek gk kokokkk Rk hkk ok

! define nodes for output: forces applied or output displacements
nsel,s,node,,l,num_elem+1

/output,%aname%%bname%%cname%,eig ! write out frequency list to ascii file .eig

*do,i,1,nummodes

set,,i
/page,,,1000
prdisp
*enddo
/output,term

! 6 sk ok ok s ok o ok ofe o afe e e sk e de e ke ok plot mOdeS sk Kok dkok kokokok ok kR kK
! pldi plots
/show,%aname%%bname%%cname%,grp,0 ! save mode shape plots to file .grp
allsel
Iview,1,,-1,, ! side view for plotting
/angle,1,0
/auto
*do,i,1,nummodes
set, 1,1
pldi,1

*enddo

/show,term




P . . T ¢
AFEy ARk SR £ .

CHAPTER 17

SISO DISK DRIVE ACTUATOR MODEL
17.1 Introduction

This chapter will use an ANSYS model of a complete disk drive
actuator/suspension system to expand on the methods and examples of the last
two chapters.

While simple in appearance, a disk drive actuator/suspension system must
fulfill a number of exacting requirements. The suspension system is required
to provide a stiff connection between the actuator and the head in the
seeking/track-following direction, while providing a compliant system in a
direction perpendicular to the plane of the disk. This allows the air bearing
supported head to comply to the shape and vibration of the disk. The actuator
is designed with low mass to allow fast seeking. It must have resonant
characteristics which provide small residual vibration following a seek from
one track to another. Since the entire disk drive is subject to various shock
and vibration events, the actuator dynamics must aid in preventing the head
from unloading from the disk during the event.

The actuator/suspension system used as the example for this and the next
chapter is a single disk actuator, with two arms and two suspensions. It is
purposely designed with poor resonance characteristics (different thickness
arms, coil positioned off the mass center of the system, etc.) in order to
provide a richer resonance picture for analysis.

We will assume that the servo system used with the actuator is a sampled
system with a 20khz sample rate, meaning that the Nyquist frequency is 10khz.
We need to understand all the modes of vibration of the system up to at least
20khz because the sampled system will alias frequencies that are higher than
10khz back into the 0 to 10khz range.

We will find that the dynamics of this ANSYS model with approximately
21000 degrees of freedom can be described well using between 8 and 20
modes of vibration (16 to 40 states), depending on what measure of
“goodness” is used. If we are interested in impulse response, we will see in
the next chapter that using only eight modes results in a system with
approximately a 5% error. For a good fit in the frequency domain through 10
khz only 8 modes are required, while a good fit through 20 khz requires 20
modes. In a well-designed actuator (this example is poorly designed as



478  Vibration Simulation Using MATLAB and ANSYS

mentioned earlier) fewer than 20 modes are required since symmetry will
couple in fewer modes.

This actuator/suspension model is a good example of what the book is all
about: generating low order models of complicated systems, in this case a
model which is approximately 1000 times smaller than the original model.

Once the ANSYS model results are available, a MATLAB model will be
created. Then we will analyze several methods of reducing the size of the
model. In the previous chapters, we used dc gains of the individual modes of
vibration to rank the most important modes to keep. If we use uniform
damping (the same zeta value for all modes) we will reach the same ranking
conclusion using either d¢ gain or peak gain. However, if we use non-uniform
damping, peak gain ranking is required. The MATLAB code will prompt for
whether uniform or non-uniform damping is being used and will choose the
appropriate ranking, dc gain or peak gain. The next chapter will introduce
another, more elegant method of ranking modes to be eliminated, balanced
reduction.

17.2 Actuator Description

Figure 17.1 shows top and cross-sectioned side views of the actuator used for
the analysis. The global XYZ coordinate system for the model is indicated.

/~ Ball Bearing / ~ Actuator Motion
/

Adhesive

Yoice Coil

Suspension' N

[ —— b
/ Recording /
Actuator Shaft Head /
Disk —

Figure 17.1: Drawing of actuator/suspension system.



Chapter 17 SISO Disk Drive Actuator Model = - » o 479

The shaft is constrained in all directions, providing a fixed reference about
which the actuator rotates on two axially preloaded ball bearings. This
actuator is purposely designed to have poor dynamic characteristics, as seen in
the side view. The coil, to which the Voice Coil Motor (VCM) forces are
applied, is not centered between the two bearings and the two arms are of
unequal thickness. Both the coil force mispositioning and the unequal arm
thickness inertial effects will tend to excite rotations about the x axis.

The coil is bonded to the aluminum actuator body. During operation, current
passes through the coil windings. The current interacts with the magnetic field
from pairs of magnets above and below the straight legs of the coil (not
shown), creating forces on the straight legs. The direction of the force is
dependent on the direction of the current in the coil, clockwise or
counterclockwise. The motion of the actuator due to the coil force is indicated
by “Actuator Motion.”

The suspensions are designed to provide a preload of several grams force onto
the disk surface. During operation the preload is counterbalanced by the air
bearing lifting force, controlling the flying height spacing between the head
and disk to less than several microinches. During shipment, the preload tends
to hold the head down on the disk surface in the event of shock and vibration
events, preventing potential damage caused by the head lifting off and striking
the disk.

17.3 ANSYS Suspension Model Description

Before analyzing the complete actuator/suspension system, we will analyze
only the suspension system. Understanding the dynamics of sensitive
components of larger assemblies as components can add considerable insight
to interpretation of the dynamics of the overall system.

The suspension portion of the actuator/suspension model is shown in Figures
17.2 and 17.3. The complete suspension is depicted in Figure 17.2, and the
“flexure” portion of the suspension is shown in Figure 17.3.



480  Vibration Simulation Using MATLAB and ANSYS

Suspension Model

Figure 17.2: Suspension model.

The recording head (slider) is bonded to the center section of the flexure. The
“dimple” at the center of the slider tongue provides a point contact about
which the slider can rotate in the pitch and roll directions. The tip of the
dimple and the contact point on the underside of the loadbeam are constrained
to move together in translation. The flexure body is laser welded to the
loadbeam (the triangular section), which is itself laser welded to the swage
plate at the left-hand end.

The boundary conditions for the suspension model are: the swage plate is
constrained in the x and z directions and the four slider corners are constrained
in the z direction. A large mass is attached at the swage plate to allow for y
direction ground acceleration forcing function. Because there is no constraint
in the y direction there will be a zero-frequency, rigid body mode in that
direction.



Chapter 17 SISO Disk Drive Actuator Model i xrve 481

e

Suspension Model

Figure 17.3: Flexure and recording head (slider) portion of suspension. Note the “dimple”
at the center of the slider, a point about which the slider rotates to comply with the disk
topology.

The model is built with the ability to easily change the critical flatness and
forming parameters because the dynamics of the suspension are so dependent
on the geometry. Small (0.025 mm, 0.001 inch) defects in critical forming and
flatness parameters can drastically change the resonance characteristics,

The suspension model is made completely of eight-node brick elements.
Laser welds and bonded joints are simulated by “merging” the nodes being
welded or bonded, essentially creating a rigid joint at that connection.

The ANSYS suspension-only model, srun.inp, is included in the available
downloads but will not be discussed. Running the model with different values
for the three input parameters “zht,” “bump” and “offset” will show the
extreme sensitivity of the first torsion mode (described below) to these
parameters.

17.4 ANSYS Suspension Model Results

The suspension has six modes of vibration in the 0 to 10 khz frequency range.
The ANSYS frequency response plot for the suspension is shown in Figure
17.4. The six modes in the 0 to 10 khz will be plotted and described below.

P
[N I



482  Vibration Simulation Using MATLAB and ANSYS

17.4.1 Frequency Response

gap

JE—

1
1.0£-03
1.06-04
£
£
@
- t.oE-0s
p=
ey ]
a
£ . .oc-0s
o
1.06-07
1.0E- T T
1.0E+02

T T T T T
3.0E+04

1.0E403

frequency., hz

Suspension Model, Lanczos Eigenvalue Extraction, zeta = 5,E-03

1.08+08

Figure 17.4: Suspension frequency response for a y direction forcing function.

17.4.2 Mode Shape Plots

Suspension Model, Lanczos Eigenvalue Extraction

ANSYS 5.5.3
MAR 4 2000
14:23:25
PLOT NO. 2
DISPLACEMENT
STEP=1

SUB =2
FREQ=2053
RS¥$=0

DMX =224.174

DSCA=.005144

Xv =1

Vv =-1

v =1
DIST=11.101
XF =43.24

YF =.235E-03
ZF =6.088
A-25=-60

CENTROID HIDDEN

Figure 17.5: Mode 2, 2053 hz, first bending mode.



Chapter 17 SISO Disk Drive Actuator Model ) 483

T ANSYS 5.5.3
MAR 4 2000

14:23:25

PLOT NO. 3

DISPLACEMENT

STEP=1

SUB =3

FREQ=3020

RS¥s=0

DMx =330.024

DSCA=.003494
XV 1

v
v =1
DIST=11.143

XF =43,256
YF =-.0684044
ZF =6.072
A-25=-60
CENTROID HIDDEN

suspension Model, Lanczos Eigenvalue Extraction

Figure 17.6: Mode 3, 3020 hz, first torsion mode.

ﬁ" ANSYS 5.5.3
MAR 4 2000

14:23:26

PLOT NO. 4

DISPLACEMENT

STEP=1

SUB =4

FREQ=6406

RSYS=0

DMX =310.058

W =1

v =1
DIST=11.114
XF =43.257
TF  =,7478~03
ZF =6.137
A-Z5=-60

CENTROID HIDDEN

Suspension Model, Lanczos Eigenvalue Extractiocn

Figure 17.7: Mode 4, 6406 hz, second bending mode.




I84  Vibration Simulation Using MATLAB and ANSYS

1 ANSYS 5.5.3
MAR 4 2000
14:23:27
PLOT NO. 5
DISPLACEMENT
STEP=1

SUB =5
FREQ=6937
RSYS=0

DMX =233.46

DSCA=.004933

Xv =1

v =1

zv =1
DIST=11.159

XF =43.288

YF =.221407

ZF =5.761
A-25=-60
CENTRCID HIDDEN

Suspension Model, Lanczos Eigenvalue Extraction

Figure 17.8: Mode 5, 6937 hz, sway or lateral mode.

1 ANSYS 5.5.3
MAR 4 2000
14:23:28
PLOT NO. 3
DISPLACEMENT
STEP=1

SUB =6
FREQ=8853
R5YS=0

DMX =429.22%

DSCA=.002687
Xv =1

wWoo=-1

v =1
DIST=11.147

XF =43.255

YF =.030464

ZF =6.089%
RA-Z5=-60
CENTROID HIDDEN

suspension Model, Lanczos Eigenvalue Extraction

Figure 17.9: Mode 6, 8859 hz, second torsion mode.

The suspension frequency response plot and mode shape plots complement
each other and help to develop a visual, intuitive understanding of modal
coupling. The only modes that have y direction motion of the slider relative to
the swage plate are the first torsion and sway modes as can be seen in the
frequency response plot of Figure 17.4. All the other modes have motions
which are orthogonal to the motion of interest. The first bending mode is the



Chapter 17 SISO Disk Drive Actuator Model A 485

most obvious example. Since its motion in only in the z direction, it cannot be
excited by a y direction forcing function, and thus, does not couple into the
frequency response.

17.5 ANSYS Actuator/Suspension Model Description

The complete actuator/suspension model is shown in Figure 17.10. It also is
made of eight-node brick elements except for the inclusion of spring elements
which are used to simulate the ball bearings’ individual ball stiffnesses.

The shaft and inner radii of the two ball bearing inner rings are fully
constrained. The four corners of each of the sliders are constrained for zero
motion in the z direction, essentially creating an infinitely stiff air bearing.

1 AN

Actuator/sSuspension Model

Figure 17.18: Complete actuator/suspension model.



486  Vibration Simulation Using MATLAB and ANSYS

Actuator/suspension Model

Figure 17.11: Actuator / suspension model, four views.

The primary motion of the actuator is rotation about the pivot bearing,
therefore the final model has the coordinate system transformed from a
Cartesian x,y,z coordinate system to a Cylindrical, r, 6 and z system, with the
two origins coincident.

/7~ Node 24087
Node 24082

15.1857° ~~ Node 24066

Node 22, top head

Node 10022, bottom head
Node 24061

Figure 17.12: Nodes used for reduced MATLAB model. Shown with partial finite element
mesh at coil.



T ey, 487

Chapter 17 SISO Disk Drive Actuator Model “:

For reduced models we only require eigenvector information for degrees of
freedom where forces are applied and where displacements are required.
Figure 17.12 shows the nodes used for the reduced MATLAB model. The
four nodes 24061, 24066, 24082 and 24087 are located in the center of the
coil in the z direction and are used for simulating the VCM force. The forces
created by the interactions between the current in the straight legs of the coil
and the magnetic field are perpendicular to the straight leg sections. Since the
coordinate system 1s cylindrical, the forces are decomposed into radial and
circumferential components as shown in Figure 17.12. Nodes 22 and 10022
are the nodes for the top and bottom heads (heads 1 and 0), respectively. The
arrows at the nodes indicate the direction of forces, and the angles show the
directions of the force, measured from the circumferential direction. The
components in the radial and circumferential directions are taken using the
angles.

The model uses only the circumferential motion of the heads, which, if divided
by the radius from the pivot to the head, will give output in radians.

The actuator/suspension ANSYS code, arun.inp, is too large to be listed here
but is available for downloading.

17.6 ANSYS Actuator/Suspension Model Results
A recommended sequence for analyzing dynamic finite element models is:

1) Plot resonant frequencies versus mode numbers to get a feel
for the frequency range. See if there are any significant jumps
in frequency between modes which can indicate the system
transitioning from one type of characteristic motion to another.
For example, a sequence of bending modes transitioning into a
sequence of torsional modes. oo

2) Plot frequency responses to define which modes couple into
the response.

3) Plot and animate the mode shapes that contribute to the
response, identifying modes that couple into motions in
directions of interest and those that do not. Visually get a
sense of how the geometry of the structure affects the modes.

4) Run parameter studies to understand the sensitivity of critical
modes to design variables: dimensions, tolerances, material
properties, etc.



488  Vibration Simulation Using MATLAB and ANSYS

17.6.1 Eigenvalues, Frequency Responses

The actuator/suspension model was run using the Block Lanczos method to
extract the first 50 eigenvalues and eigenvectors. The plot of frequency versus
number of modes is shown in Figure 17.13. The first mode, the rigid body
mode, was calculated to be 0.0101 hz, with the first oscillatory mode
frequency at 785 hz.

frequency versus mode number
10 — 1 T T o T T T T

frequency, hz

10 1 i1 F E— 1 L 1 L L
0 5 10 15 20 25 30 35 40 45 50
mode number

Figure 17.13: Frequencies versus mode number.

Mode 50 is at 22350 hz, which is slightly higher than our objective of
including all the modes through 20 khz.

Frequency responses for the displacements of heads 0 and 1 (bottom and top
heads) for coil input force can be seen in Figures 17.14 and 17.15. Mode
shape plots, with undeformed and deformed shapes, are then shown for the
modes which are evident in the frequency response plots. In addition, some
typical modes that do not couple into the frequency response are shown.



Chapter 17 SISO Disk Drive Actuator Model 489

head 0, gap displacement, all 50 modes included
10 E T T

Magnitude, mm
=
& &
T
[ ==y
L
o S
.

10° 10
Frequency, hz

Figure 17.14: Frequency response for head 0 for coil input.

head 1, gap displacement, all 50 modes included

10 : .
1051 4
1
£ A
g . I i
3 10°} .Y } ﬂﬁ EE
£ %
o
1]
107 P
‘ .
10° 10
Frequency, hz

Figure 17.15: Frequency response for head 1 for coil input.

17.6.2 Mode Shape Plots , R

In this section we will plot overlaid undeformed and deformed modes shapes
for selected modes, which will then be described and discussed in the next
section.



490 Vibration Simulation Using MATLAB and ANSYS

1 ANSYS 5.5.3
MAR 3 2000
12:42:00
PLOT NO. 1
DISPLACEMENT
STEP=1

SUB =1
FREQ=.011877
RSYS=1

DMX =33.471

v =1
DIST=45.054
XF =10.293
YF =2.317
ZF  =4.25
A-%5=-60

CENTROID HIDDEN

Actuator/Suspension Model, Lanczos Eigenvalue Extraction

T

Figure 17.16: Mode 1 undeformed/deforlhed mode shape plot, 0.012 hz rigid body

rotation.

1 ANSYS 5.5.3
MAR 3 2000
12:42:11
PLOT NO. 2
DISPLACEMENT
STEP=1
SUB =2
FREQ=785.393
RSYS=1
DMX =86.536

DIST=45.084

XF =10.315

YF =.328E-03
ZF =4.264
A-28=-60
CENTROID HIDDEN

Actuator/suspension Model, Lanczos Eigenvalue Extraction

Figure 17.17: Mode 2 mode shape plot, 785 hz. Bending of bottom arm.



Chapter 17 SISO Disk Drive Actuator Model

1 ANSYS 5.5.3
MAR 3 2000
12:42:19
PLOT NO. 3
DISPLACEMENT
STEP=1
SUB
FRE
RSY:

DMX
DSCA=.12548
XV

v

v
DIST=45.186
XF =10.218
IF 415E-03

iF .801
A-25=-60
CENTRGID HIDDEN

Actuator/suspension Model, Lanczos Eigenvalue Extraction

Figure 17.18: Mode 3 mode shape plot, 885 hz, coil and bottom arm bending.

1 ANSYS 5.5.3
MAR 3 2000
12:42:43
PLOT NO. 6
DISPLACEMENT

STEP=1

DMX =40.224
DSCA=.110606
XV

v 1

zv
DIST=45.12
XF =10.293

YF 051729

ZF <127
A-25=-60
CENTROID HIDDEN

Actuator/suspension Model, Lanczos Eigenvalue Extraction

Figure 17.19: Mode 6 mode shape plot, 2114 hz, coil torsion.



492  Vibration Simulation Using MATLAB and ANSYS

1 ANSYS 5.5.3
MAR 3 2000
12:42:52
PLOT NO. 7
DISPLACEMENT
STEP=1

SUB =7
FREQ=2159
RSYS=1

DMX =170.242

DSCA=.026133

CENTROID HIDDEN

Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 17.20: Mode 7 mode shape plot, 2159 hz, suspension bending modes.

1 ANSYS 5.5.3
MAR 3 2000
12:43:06
PLOT NO. 9
DISPLACEMENT
STEP=1

SUB =9
FREQ=2939
RS¥S=1

DMX =322.827

CENTROID HIDDEN

Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 17.21: Mode 9 mode shape plot, 2939 hz, suspension torsion mode.



Chapter 17 SISO Disk Drive Actuator Model

1 ANSYS 5.5.3
MAR 3 2000
12:43:23
PLOT NO. 11
M DISPLACEMENT
STEP=1
SUB =11

DIST=45.309
XF =10.486

YF =-.728064
IF .375
A-75=-60
CENTRCID HIDDEN

Actuator/sSuspension Model, Lanczos Eigenvalue Extraction

Figure 17.22: Mode 11 mode shape plot, 4305 hz, system mode.

1 ANSYS 5.5.3
MAR 3 2000
12:43:32
PLOT NO. 12
DISPLACEMENT
STEP=1

SUB =12
FREQ=4320
RSYS=1

DMX =74,53

DSCA=.059694

CENTROID HIDDEN

Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 17.23: Mode 12 mode shape plot, 4320 hz, radial mode.



494  Vibration Simulation Using MATLAB and ANSYS

1 ANSYS 5.5.3
MAR 3 2000
12:43:41
PLOT NO. 13
DISPLACEMENT
STEP=1

SUB =13
FREQ=5146
RSYS=1

DMX =147.436

DSCA=.030176

XV

v =1

zv =1
DIST=45.121
XF =10.368
YF =.060258
ZF =4.256
A-Z75=-60

CENTROID HIDDEN

Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 17.24: Mode 13 mode shape plot, 5146 hz.

1 ANSYS 5.5.3

PLOT NO. 18
DISPLACEMENT
STEP=1

SUB =18
FREQ=6561
RS¥S=1

DMX =124.87%

DSCA=.035626

Xv =1

WV =1

v =1
DIST=45.141
XF =10.408
YF =.092522
ZF =3.967
A-25=-60

CENTROID HIDDEN

Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 17.25: Mode 18 mode shape plot, 6561 hz.



Chapter 17 SISO Disk Drive Actuator Model 495

1 ANSYS 5.5.3
MAR 3 2000
12:45:18
PLOT NO. 24
DISPLACEMENT
STEP=1

SUB =24
FREQ=9152
RSYS=]

DMX =26.382

DSCA=~, 168637

XV =1

woo=-1

v =1
DIST=45.669

XF =10.266

YF  =.3384139

ZF =4,33%
A-Z5=-60
CENTROID HIDDEN

Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 17.26: Mode 24 mode shape plot, 9152 hz.
17.6.3 Mode Shape Discussion

We will now correlate the two frequency response plots, Figures 17.14 and
17.15, with the mode shape plots above to start getting an intuitive feel for
which modes couple into the response plots and which modes do not.

Mode 1, the rigid body mode, shows up as the 40db/decade low frequency
slopes on both frequency responses, head 0 and head 1.

Modes 2 and 3, at 785 and 884 hz, are representative of modes that do not
couple because of the direction of the motion. Both modes involve only
bending motions of arms and/or coil in the x-z plane. Since the motions are
perpendicular (orthogonal) to the direction of force and to the direction of the
head in the circumferential direction, the modes should not couple into the
frequency response plots. Therefore we see no resonance peaks at these two
frequencies.

Mode 6 at 2114 hz is a coil/actuator torsion mode that shows up as the small
pole/zero pair in the head 1 frequency response.

Mode 7 at 2159 hz is a suspension bending mode that does not couple into the
response.

Mode 9 at 2939 hz is a suspension torsion mode that interacts with the rigid
body mode to create the significant pole/zero pair at 2939 hz.



496  Vibration Simulation Using MATLAB and ANSYS

Modes 11 and 12 at 4305 hz and 4320 hz are the major system modes with
significant y direction motion of the coil, bearings, arms and suspensions.
These are the two modes associated with the highest resonant peak in the
frequency response. What appears to be a single peak is actually two peaks.

Mode 13 at 5146 hz is a mode which involves torsion of the coil and actuator
body about the x axis with the suspensions moving torsionally and laterally.

Mode 18 at 6561 hz is a suspension sway mode, where the suspension-only
mode at 6937 hz (Figure 17.8) is reduced to 6561 hz because it is attached to
the flexible actuator.

Mode 24 at 9152 hz is a highly deformed actuator mode, in which the actuator
hub moves significantly about the ball bearing, the coil deforms and
suspensions and arms deflect.

17.6.4 ANSYS Output Example Listing

A partial listing of the eigenvector output (actrl.eig) for modes 1, 2, 11 and 12
is shown below. These four modes were chosen for listing and discussion
because they illustrate some key points about interpreting ANSYS eigenvector
output. The important information in each of the eigenvector sections is
highlighted in bold type. The “SUBSTEP” is the mode number, and “FREQ”
is the eigenvalue in hz. Since the output is in cylindrical coordinates, UX, UY
and UZ refer to radial, circumferential and z axis coordinates, respectively.
Since all the elements attached to the six nodes listed are eight-node brick
elements, with only translational degrees of freedom, all the rotation
eigenvector values are zero. The six nodes listed correspond to the two heads,
22 and 10022 and the four coil forcing function nodes, 24061, 24066, 24082
and 24087. See Figure 17.12 for node locations. We need both radial (UX)
and circumferential (UY) directions because the forces applied by the VCM to
the coil are perpendicular to the straight legs of the coil, and have both radial
and circumferential components.

PRINT DOF NODAL SOLUTION PER NODE
*#+++ POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1
FREQ= 0.11877E-01 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM
i

NODE UX 100 4 vz ROTX ROTY ROTZ
22 0.30718E-06 32.772 0.85804E-12 0.0000  0.0000  0.0000




Chapter 17 SISO Disk Drive Actuator Model 497

10022 0.30759E-06 32.772 -0.49994E-10 0.0000  0.0000  0.0000
24061 0.11969E-06 16.968 -0.17668E-08 0.0000  0.0000  0.0000

24066 0.77415E-07 10.274 -0.15751E-08 0.0000  0.0000  0.0000
24082 0.68508E-07 10.274 -0.15395E-08 0.0000  0.0000  0.0000
24087 0.10089E-06 16.968 -0.16990E-08 0.0000  0.0000  0.0000

MAXIMUM ABSOLUTE VALUES

NODE 10022 22 24061 0 0 0
VALUE 0.30759E-06 32.772 -0.17668E-08 0.0000  0.0000  0.0000
*ENDDO INDEX=1

**+++ POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 2
FREQ= 785.39 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM
1

NODE UX Uy uz ROTX ROTY ROTZ
22-0.25631 -0.19637E-01 0.15936E-04 0.0000 0.0000  0.0000
10022 0.92764 -0.10736 0 .29519E-02  0.0000  0.0000  0.0000

24061 0.18573 -0.67085E-01 -5.7724 0.0000  0.0000  0.0000
24066 0.17688 -0.88331E-01 -2.1255 0.0000  0.0000  0.0000
24082 0.17616  0.95885E-01 -2.1213 0.0000 0.0000  0.0000
24087 0.18506 0.79278E-01 -5.7661 0.0000  0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 10022 10022 24061 0 0 0
VALUE 0.92764 -0.10736 -5.7724 0.0000  0.0000  0.0000

**#3+ POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 11
FREQ= 43053 LOADCASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM
NODE UX Uy vz ROTX ROTY ROTZ

22 -4.4488  27.588 -0.66528E-04 0.0000  0.0000  0.0000
10022 39832 41.657 0.44809E-01 0.0000  0.0000  0.0000

24061 -0.43605 -10.023 -8.7664 0.0000  0.0000  0.0000
24066 0.35112  -3.5631 -11.532 0.0000  0.0000 0.0000
24082 3.9625 -1.1137 -14.210 0.0000  0.0000 0.0000
24087 5.0136 -7.8562 -6.0297 0.0000  0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 24087 10022 24082 0 0 0
VALUE 5.0136 41.657 -14210 0.0000 0.0000 0.0000

*xxx% POST1 NODAL DEGREE OF FREEDOM LISTING *****




498 Vibration Simulation Using MATLAB and ANSYS

LOAD STEP= 1 SUBSTEP= 12
FREQ= 4320.1 LOADCASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM
1

NODE UX Uy Uz ROTX  ROTY ROTZ
22 43947 36.811 -0.25761E-02 0.0000 0.0006  0.0000
10022 -0.88223  62.097 0.34209E-01 0.0000 0.0000  0.0000

24061 -53622 -11.584  3.9397 0.0000  0.0000  0.0000
24066 -3.9590 -2.2258  10.513 0.0000  0.0000  0.0000
24082 0.81662 -4.0070 7.7931 0.0000  0.0000 0.0000
24087 2.0281 -13.160  6.6813 0.0000  0.0000  0.0000

MAXIMUM ABSOLUTE VALUES
NODE 24061 10022 24066 0 0 0
VALUE -5.3622 62.097 10513 0.0000 0.0000 0.0000

We will now discuss the eigenvector listings above in light of the frequency
response and mode shape plots reviewed earlier. Once again, we will make
the connection between modes that contribute to frequency responses and
those that do not.

Mode 1 shows that all the UX and UZ entries are essentially zero, which is
appropriate for a rigid body mode where the actuator is rotating about the
shaft, with only circumferential, UY, displacements. The relative amplitudes
of each UY entry are related by their radial distances from the shaft. The
frequency calculated is not exactly zero because of rounding and slight
geometric errors which create small stiffnesses in rotation about the shaft.

Mode 2 is the first oscillatory mode, the arm bending mode. A mode which
involves only UZ motion will have no cross-coupling in the y direction since
the actuator system is symmetrical about the x axis. In a typical disk drive, the
actuator is not perfectly symmetrical, and modes whose motions are primarily
in the vertical direction will couple in the y direction. All of the UY entries
for this mode are very small relative to the UZ entries, indicating that the
contribution of this mode to the y direction motion of the head should be
small.

Modes 12 and 13 are the major system modes, those modes with the highest
amplitude motion on the frequency response plot. The entries in the UY
column are significant relative to the entries for mode 2 and are of the same
order of magnitude as those in mode 1. This indicates that this mode is
relatively important for our desired frequency response.



Chapter 17 SISO Disk Drive Actuator Model e 499

The eigenvalues and UX and UY eigenvector entries are stripped out of the
actrl.eig file and stored in the MATLAB .mat file actrl eig.mat (Appendix 1).
Now we are ready to read the ANSYS results into MATLAB and start
developing the reduced model.

17.7 MATLAB Model, MATLAB Code act8.m Listing and Results
17.7.1 Code Description

The code starts by reading in the ANSYS model eigenvalue and eigenvector
results for all 50 modes from actrl _eig.mat. The VCM force components in
the radial and circumferential directions are then defined using the angles
shown in Figure 17.12.

The user is prompted to specify whether the same zeta value is to be used for
all modes (uniform damping), or whether each mode can have different values,
non-uniform damping. If uniform damping is specified, the user is prompted
to enter a value for zeta, a vector of uniform damping values is created and dc
gains are calculated. If non-uniform damping is chosen, a damping vector is
read in from zetain.m and peak gains are calculated. The appropriate gains
are then sorted and plotted, indicating the most important modes to retain.
Typically uniform damping is taken in the range of 0.005 (0.5% of critical
damping) to 0.02 (2% of critical damping). If experimental data is available,
the damping values for each mode in zetain.m can be matched to its
experimentally determined value.

Once the user defines the number of modes to be retained, two state space
systems are automatically built. The first includes all 50 modes and the
second includes the sorted, reduced number of modes. The 50-mode response
is plotted for either head O or head 1 with individual mode contributions
overlaid.

Since the servo system postulated for the actuator has a 20 khz sample
frequency, the Nyquist frequency is half that, or 10 khz. This means that
resonances higher in frequency than the Nyquist frequency will be aliased
back to the O to 10 khz range. The user is prompted for the sample frequency
to be used (default 20 khz). The MATLAB “c2d” command is used to create
a discrete model of the original continuous system. A discrete frequency
response, with upper limit of the Nyquist frequency, is created and plotted,
overlaying the original continuous frequency response. If the sample rate is
high enough, this overlay allows one to see that it will not alias critical modes
of vibration. Experimentally, the only information available from a discrete
servo system frequency response is up to the Nyquist frequency.
Measurements which are independent of the servo system (such as from an



500 Vibration Simulation Using MATLAB and ANSYS

external laser measurement system) are required to identify modes higher than
the Nyquist frequency. An example of using a very low sampling frequency
with this actuator system will be shown.

Frequency responses are calculated using the reduced, sorted modes,
truncating the less important modes and using the “modred” “mdc” option.
Truncating is the same as using the “del” option on the MATLAB “modred”
command.

17.7.2 Input, dof Definition

The first section of code reads in the eigenvalue/eigenvector data from
actrl_eig.mat and defines explicitly the degrees of freedom used. The
original ANSYS model has approximately 21000 degrees of freedom. By
defining only the degrees of freedom required for the desired frequency
response, we can reduce the number of degrees required for the MATLAB
model to 12: the radial and circumferential components of the two head nodes
and the four coil forcing function nodes.

% act8.m
clear all;
hold off;
clf;
% load the Block Lanczos .mat file actrl_eig.mat, containing evr - the modal matrix,
% freqvec - the frequency vector and node_numbers - the vector of node numbers
% for the modal matrix
% the output for the ANSYS run is the following dof's
% dof node dir where
% 1 22 ux - radial, top head gap
% 2 10022 ux - radial, bottom head gap
% 3 24061 ux - radial, coil
% 4 24066 ux - radial, coil
% 5 24082 ux - radial, coil
% 6 24087 ux - radial, coil
% 7 22 uy - circumferential, top head gap
% 8 10022 uy - circumferential, bottom head gap
% 9 24061 uy - circumferential, coil
% 10 24066 uy - circumferential, coil
% 11 24082 uy - circumferential, coil
% 12 24087 uy - circumferential, coil

load actrl_eig;




Chapter 17 SISO Disk Drive Actuator Model : o 501

[numdof,;num_modes_total] = size(evr);
freqvec(1) = 0; % set frequency of rigid body mode to zero

XN = evr;

17.7.3 Forcing Function Definition, d¢ Gain Calculation

A vector of the squares of the eigenvalues, in rad/sec units, for use in the gain
calculations is generated. Like the dc gain calculation with a rigid body mode
discussed in the last chapter, we will again calculate the low frequency gain of
the rigid body mode using the lowest frequency defined in the frequency
response calculation. cio

The forcing function components for the four coil nodes are defined, again
using Figure 17.12 as the reference. A unity force is applied at the coil, and
evenly distributed among the four nodes. The force at each coil node is
decomposed into its components in the radial and circumferential (x and y)
directions. The coil forces in physical coordinates are then defined for each
coil node and where the ux and uy force entries for the head nodes, dof 1, 2, 7
and 8 are all zero.

A discussion of what is meant by “Single Input Single Output” (SISO) is
appropriate here. This model is a “SI” or Single Input model because the
same force is applied to all four coil nodes, requiring only a single column
vector for the input matrix “b.” The fact that forces are applied to multiple
nodes has no significance relative to the “SI” definition.

In Chapter 15, (15.2) and (15.3), we found that the dc gain and peak gain of
for the i™ mode are given by the expressions:

Z. Z .Z

ji nji “'nki

—_ =, 17.1

E, o - : a7
Zy -j .
— = ——(dcgain 17.2
R, =g, (o) (72

where 7.z, the residue, is the product of the jth (output) row and kth
(force applied) row terms of the ith eigenvector divided by the square of the
eigenvalue for the i mode and ¢, is the damping for the i" mode. For all the

models so far in the book, forces have been applied at a single node and
displacements have been taken at a single node, making the above definitions




502 Vibration Simulation Using MATLAB and ANSYS

clear. Here we are applying the same force to four coil nodes, so we will
define a composite forcing function which will consist of the force applied to
each node times the eigenvector value for that node, f physical’*xn. The
dimensions of this operation are (1 x ndof) x (ndof x nmodes) = (1 x nmodes),
so we have a compoesite force vector for each mode.

This composite force vector is then multiplied element by element by the rows
of the eigenvector matrix corresponding to the uy direction displacements of
the two heads.

We will calculate and plot the gains for both head 0 and head 1 but will only
calculate frequency response results for one or the other (user defined). Thus
there is no ambiguity about whether to rank modes based on the gains of head
0 or head 1, only the one chosen for frequency response calculations is used
for ranking.

% calculate the dc amplitude of the displacement of each mode by
% multiplying the composite forcing function by the output row

omega2 = (2*pi*freqvec).”2; % convert to radians and square
% define frequency range for frequency response

freqlo = 501;

freqhi = 25000;

flo=log10(freqlo) ;
fthi=log10(freghi) ;

f=logspace(flo,thi,300) ;

frad=<2%pi ;
% define radial and circumferential forces applied at four coil force nodes
% "x" is radial, "y" is circumferential, total force is unity

n24061fx = 0.25*sin(9.1148*pi/180);
n24061£y = 0.25*cos(9.1148*pi/180);

n24066fx = 0.25*sin(15.1657*pi/180);
n24066fy = 0.25*%cos(15.1657*pi/180);

n24082fx = -0.25*sin(15.1657*pi/180);
n24082fy = 0.25*cos(15.1657*pi/180);

n24087fx = -0.25*sin(9.1148*pi/180);
n24087fy = 0.25%co0s(9.1148*pi/180);

% f physical is the vector of physical force
% zeros at each output dof and input force at the input dof




Chapter 17 SISO Disk Drive Actuator Model xht 503

f physical=[ 0
0

n24061fx
n24066fx
n24082fx
n24087fx

0

0
n240611fy
n24066fy
n24082fy
n24087fy 1;

% define composite forcing function, force applied to each node times
eigenvector value
Y% for that node
force = f_physical*xn;
% choose which head to use for frequency responses
head = input('enter "0" default for head 0 or "1" forhead 1 ... ");
if isempty(head)
head = 0;
end

% prompt for uniform or variable zeta

zeta_type = input(‘enter "1" to read in damping vector (zetain.m) ...
or "enter" for uniform damping ... ');

if (isempty(zeta_type))

zeta_type = 0; o R

zeta_uniform = input(‘enter value for uniform damping, ...
.005 is 0.5% of critical (default) ... );

if (isempty(zeta_uniformy))
zeta_uniform = 0.005; RF
end
zeta_unsort = zeta_uniform*ones(num_modés_total, 1);
gainstr = ‘dc gain’;
else
zetain; % read in zeta_unsort damping vector from zetain.m file

gainstr = ‘peak gain’;

end




504  Vibration Simulation Using MATLAB and ANSYS

if length(zeta_unsort) ~= num_modes_total

error(['error - zetain vector has ',;num2str(length(zeta_unsort)), ...
" entries instead of ,num2str(num_modes_total)]);

end
% calculate dc gains if uniform damping, peak gains if non-uniform
if zeta type =0 % dc gain
gain_h0 = abs([force(1)*xn(8,1)/frad(1) ... )
i force(2:num_modes_total).*xn(8,2:num_modes_total) ...
J/omega2(2:num_modes_total)]);
gain_hl = abs([force(1)*xn(7,1)/frad(1) ...
force(2:num_modes_total).*xn(7,2:num_modes_total) ...
Jomega2(2:num_modes_total)]);
elseif zeta_type =1 % peak gain
gain_h0 = abs({force(1)*xn(8,1)/frad(1) ...
force(2:num_modes_total).*xn(8,2:num_modes_total) ...
J((2*zeta_unsort(2:num_modes_total))'. *omega2(2:num_modes_total})}]);
gain_h1 = abs([force(1)*xn(7,1)/frad(1) ...
force(2:num_modes_total).*xn(7,2:num_modes_total) ...
J((2*zeta_unsort(2:num_modes_total))'. *omega2(2:num_modes_total}}]);

end

% sort gains, keeping track of original and new indices so can rearrange
% eigenvalues and eigenvectors

[gain_hO_sort,index_hO_sort] = sort(gain_h0);

[gain_hl_sort,index_hl_sort] = sort(gain_h1);

gain_hO_sort = fliplr(gain_h0_sort); % max to min
gain_hl_sort = fliplr(gain_hl_sort); % max to min
index_hO_sort = fliplr(index_h0O_sort) % max to min indices
index_hl_sort = fliplr(index_h1_sort) % max to min indices

index_orig = 1:num_modes_total;
if head =
index_sort = index_h0_sort;

headstr = 'head 0';




Chapter 17 SISO Disk Drive Actuator Model

505

%

%

index_out=2;
elseif head ==

index_sort = index_hl_sort;

headstr = 'head 1"; &

index_out=1;
end
plot results

semilogy(index_orig(2:num_modes_total),freqvec(2:num_modes_total),'k-");
title("frequency versus mode number')

xlabel('mode number')

ylabel('frequency, hz')

grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

semilogy(index_orig,gain_h0,'k-',index_orig,gain_hl,'k.-")

title('dc value of each mode contribution versus mode number')
xlabel('mode number')

ylabel('dc value')

legend(‘head 0','head 1')

grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

loglog(freqvec(2:num_modes_total),gain_hO(2:num_modes_total),'’k-, ...
freqvec(2:num_modes_total),gain h1(2:num_modes_total),’k.-"}

title('dc value of each mode contribution versus frequency’)

xlabel('frequency, hz')

ylabel('dc value')

legend(*head 0','head 1)

axis([500 25000 -inf 1e-4])

grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

semilogy(index_orig,gain_hO_sort,'k-',index_orig,gain_h1_sort,’k.-")
title('sorted dc value of each mode versus number of modes included')
xlabel('modes included')

ylabel('sorted dc value')

legend(‘head 0','head 1%)

grid off

choose number of modes to use based on ranking of dc gain values

num_modes_used = input(['enter how many modes (including rigid body) ...
to include, 'num?2str(num_modes_total),' max, 8 default ... ']);

if (isempty(num_modes_used))
num_modes_used = 8; B &
end




506 Vibration Simulation Using MATLAB and ANSYS

num_states_used = 2*num_modes_used;

17.7.4 Ranking Results

Here, we will begin by reviewing the frequency versus mode number plot to
get a feel for the frequency range of the model.

frequency versus mode number

10 T T T T T T T

10*
8
>
2
[}
3
o
2

10°)

102 Il 1 1 L 1 I I i 1

0 5 10 15 20 25 30 35 40 45 50
mode number
Figure 17.27: Frequency versus mode number.
o dc gain of each mode contribution versus mode number
10 T T T T T T T T

— head 0 |
|+ head 1 |

0 5 10 15 20 25 30 35 40 45 50
mode number

Figure 17.28: dc gain versus mode number, uniform damping zeta 0.005 (0.5% of critical
damping) for all modes.




Chapter 17 SISO Disk Drive Actuator Model

507

peak gain of each mode contribution versus mode number

dc value
-
(=
T

10

-10

T T T T | — T

— head 0
—— head 1 J

10

10 15 20 25 30
mode number

Figure 17.29: Peak gain versus mode number, non-uniform damping, zeta = 0.04 (4% of
critical damping) for modes 11, 12 and 13.

The dc and peak gain plots for both head 0 and head 1 are shown above. Note
the relative heights of the dc and peak gains for modes 11, 12 and 13. In the
peak gain plot, those three gains are lower than the two gains immediately to
the left. Conversely, in the dc gain plot the three modes are the highest gains
with the exception of the rigid body mode.

The same two plots versus frequency, instead of mode number:

dc gain of each mode contribution versus frequency

T T

— head 0
—e— head 1

frequency, hz

Figure 17.30: dc gain versus frequency.



508 Vibration Simulation Using MATLAB and ANSYS

peak gain of each mode contribution versus frequency

10 :
— head 0
, —e— head 1
-6
10° L .
| \ “‘ \ Jﬂ@
i i
g / hd
K] M/
> |
g 10° 1
M
\
10" \ / : .
Ll ‘
10° 10*

frequency, hz
Figure 17.31: Peak gain versus frequency.

The gain plots versus mode number include the rigid body mode low
frequency gain, while the gain plots versus frequency do not include the rigid
body mode.

Figure 17.32 shows the modes ranked from most to least significant for the
uniform damping (dc gain) case and includes the low frequency (500 hz) dc
gain of the rigid body mode.

dc gain of each mode versus number of modes included

10 T T - T T T T T T

-— head 0

; —e— head 1
107 | 1

sorted dc value

'
0 5 10 15 20 25 30 35 40 45 50
modes included

Figure 17.32: Sorted dc gain versus number of modes included.



Chapter 17 SISO Disk Drive Actuator Model - 509

Relative to the 500 hz low frequency gain of the rigid body mode, the next
most significant mode is lower by almost six orders of magnitude. Note that
both head 0 and head 1 have similar magnitude curves, although the ordering
of individual ranked modes are different. Furthermore, after the drop in dc
gain from the rigid body mode to the second mode, there are no other
significant drops. Gain is changing gradually, so there is no clear demarcation
indicating the number of modes needed to be included. Picking the number of
modes to use will be quite subjective, with each additional mode improving
the model only slightly.

17.7.5 Building State Space Matrices

To prepare for building the system matrices, two sets of eigenvalue vectors
and eigenvector matrices are defined. The first set is the original, unsorted
eigenvalues and eigenvectors. The second set consists of the rearranged
eigenvalues, eigenvectors and the damping vector, sorted by dc or peak gain.
Using the same techniques defined in earlier chapters, the a, b and ¢ matrices
are formed.

% define eigenvalues and eigenvectors for unsorted and sorted modes
% all modes included model, use original order

xnnew = xn(:,(1:num_modes_total));

freqnew = freqvec((1:num_modes_total});

zeta = zeta_unsort;
% all modes included, sorted

xnnew_sort = xn(:,index_sort(1:num_modes_total));

freqnew_sort = freqvec(index_sort(1:num_modes_total));

zeta_sort = zeta_unsort(index_sort(1:num_modes_total));

% define variables for all modes included system matrix, a
w = freqnew*2 *pi; % frequencies in rad/sec
w2 =w."2;

zZw = 2¥zeta_unsort.*w;
% define variables for all modes included sorted system matrix, a_sort

w_sort = freqnew_sort*2*pi; % frequencies in rad/sec




510 Vibration Simulation Using MATLAB and ANSYS

%

%

%

w2_sort = w_sort."2;

zw_sort = 2*zeta_sort.*w_sort;

define size of system matrix

asize = 2*num_modes_total;

disp(' );

disp(' );

disp(['size of system matrix a is ',;num2str(asize)]);
setup system matrix for all modes included mode!
a = zeros(asize);

for col =2:2:asize

row = col-1;

a(row,col) = 1;

end

for col=1:2:asize

row = col+l;

a(row,col) = -w2((col+1)/2);

end

for col =2:2:asize

row = col;

a(row,col) = -zw(col/2);

end

setup system matrix for sorted ali modes included model
a_sort = zeros(asize);

for col = 2:2:asize

row = col-1;

a_sort(row,col) = 1;

end

for col = 1:2:asize




Chapter 17 SISO Disk Drive Actuator Model - o

51

%

%

%

%

%

%

%
%
%
%
%

%

row = col+1;
a_sort(row,col) = -w2_sort((col+1)/2);
end
for col =2:2:asize
row = col;
a_sort(row,col) = -zw_sort(col/2);
end
setup input matrix b, state space forcing function in principal coordinates
now setup the principal force vector for the three cases, all modes, sort
f principal is the vector of forces in principal coordinates
f_principal = xnnew'*f_physical;
b is the vector of forces in principal coordinates, state space form
b = zeros(2*num_modes_total,1);
for cnt = l:num_modes_total

b(2*cnt) = f_principal(cnt);
end
f principal_sort is the vector of forces in principal coordinates
f principal_sort=xnnew_sort™*f physical;
b_sort is the vector of forces in principal coordinates, state space form
b_sort = zeros(2*num_modes_total,1);
for cnt = l:num_modes_used

b_sort(2*cnt) = f_principal_sort(cnt);

end

setup cdisp and cvel, padded xn matrices to give the displacement and velocity

vectors in physical coordinates

cdisp and cvel each have numdof rows and alternating columns
consisting of columns of xnnew and zeros to give total columns equal
to the number of states

all modes included cdisp and cvel

for col = 1:2:2*length(freqnew)




512 Vibration Simulation Using MATLAB and ANSYS

for row = l:numdof
c_disp(row,col) = xnnew(row,ceil(col/2));
cvel(row,col) = 0;
end
end
for col = 2:2:2*length(freqnew)
for row = l:numdof
c¢_disp(row,col) = 0;
cvel(row,col) = xnnew(row,col/2);
end
end
% all modes included sorted cdisp and cvel
for col = 1:2:2*length(freqnew_sort)
for row = L:numdof
cdisp_sort(row,col) = xnnew_sort(row,ceil(col/2));
cvel_sort(row,col) = 0;
end
end
for col=2:2:2*length(freqnew_sort)
for row = I:numdof
cdisp_sort(row,col) = 0;
cvel_sort(row,col) = xnnew_sort(row,col/2);
end
end
% define output’v

d=[0]; %




Chapter 17 SISO Disk Drive Actuator Model 2 513

17.7.6 Define State Space Systems, Original and Reduced

Now that the original and sorted state space matrices are available, we can use
the “ss” command to define the systems for analysis. The following systems
are set up:

1) unsorted model with all modes included
2) sorted model with all modes included

3) sorted, truncated reduced model using the sorted model from
2) above (same as the “modred” “del” option)

4) sorted, “modred” “mdc” option reduction using the sorted
model from 2) above

The bode command is used to define magnitude and phase vectors for (1), (3)
and (4) above.

In order to see the effects of different servo sample rates on aliasing of high
frequency modes, the user is prompted to enter a sample frequency, which
defaults to 20 khz. Examples of several sample rates are shown below. A
discussion of aliasing is outside the scope of the book but several references
are recommended (Franklin 1994 and Franklin 1998).

% define state space systems with the "ss" command, outputs are the
% two gap displacements
% define unsorted all modes included system

sys =ss(a,b,c_disp(7:8,:),d);

Y% define sorted all modes included system
sys_sort = ss(a_sort,b_sort,cdisp_sort(7:8,:),d);

% define sorted reduced system
a_sort_red =a_sort(1:num_states_used,1:num_states used);
b_sort_red =b_sort(1:num_states_used);
cdisp_sort_red = cdisp_sort(7:8,1:num_states_used);
sys_sort_red = ss(a_sort_red,b_sort_red,cdisp_sort_red,d);

% define modred "mdc" reduced system, modred "del” option same as sorted reduced
above




514  Vibration Simulation Using MATLAB and ANSYS

states_del = (2*num_modes_used+1):2*num_modes_total;
sys_mdc = modred(sys_sort,states_del,'mdc');
sys mdc_nosort = modred(sys,[17:100],'mdc");
% use "bode" command to generate magnitude/phase vectors
[mag,phs] = bode(sys,frad);
[mag sort_red,phs_sort_red] = bode(sys_sort_red,frad);
[mag_mdc,phs_mdc]=bode(sys_mdc,frad) ;
[mag_mdc_nosort,phs_mdc_nosort]=bode(sys_mdc_nosort,frad) ;
% convert magnitude to db
magdb = 20*log10(mag);
mag_sort_reddb = 20*log10(mag_sort_red);
mag_mdecdb = 20*log1 0(mag_mdc);

% check on discretized system aliasing

sample_freq = input('enter sample frequency, khz, default 20 khz ...

if isempty(sample freq)
sample freq = 20;
end
nyquist_freq = sample_freq/2;
disp(['Nyquist frequency is ',num2str(nyquist_freq),' khz']);
ts = 1/(1000*sample_freq);

freqdlo = 500;

freqdhi = 1000*nyquist_freq; % only take frequency response to nyquist_freq

fdlo=log10(freqdlo) ;
fdhi=log10(freqdhi) ;

fd=logspace(fdlo,fdhi,400) ;
fdrad=fd*2*pi ;

sysd = c2d(sys,ts);

[magd,phsd] = bode(sysd,fdrad);

%




Chapter 17 SISO Disk Drive Actuator Model P 515

magddb = 20*log10(magd);

17.7.7 Plotting of Results

The code section below piots the frequency response for the model including
all 50 modes and overlaying the individual mode contributions. The sampled
frequency response is also plotted, with an overlay of the original 50-mode
model response for comparison.

The two reduced models are then plotted, including the individual mode
contributions.

The workspace in saved in act8_data.mat for use in the balreal.m code in
Chapter 18.

% start plotting
% plot all modes included response
loglog(f,mag(index_out,:),'’k.-")
title([headstr ', gap displacement, all ',num2str(num_modes_total),' modes included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 -inf 1e-4])
grid off
disp(‘execution paused to display figure, "enter” to continue'); pause
hold on
max_modes_plot = num_modes_total;
for pent = 1:max_modes_plot
index = 2*pcnt;
amode = a(index-1:index,index-1:index);
bmode = b(index-1:index);
cmode = ¢_disp(7:8,index-1:index);
dmode = [0];
sys_mode = ss(amode,bmode,cmode,dmode);

[mag_mode,phs_mode]=bode(sys_mode,frad) ;

mag_modedb = 20*log1 0(mag_mode);




516 Vibration Simulation Using MATLAB and ANSYS

loglog(f,;mag_mode(index_out,:),'’k-")
end
axis([500 25000 -inf 1e-4])
disp(‘execution paused to display figure, "enter” to continue'); pause
hold off
loglog(f,mag(index_out,:),’k-',fd,magd(index_out,:),'’k.-")
title([headstr ', gap displacement, all ',num2str(num_modes_total), ...
' modes included, Nyquist frequency ',num2str(nyquist_freq),' hz'])
xlabel('Frequency, hz')
ylabel('"Magnitude, mm')
legend('continuous','discrete’)
axis([500 25000 le-8 1e-4])
grid off
disp(‘execution paused to display figure, "enter" to continue'); pause
if num_modes_used < num_modes_total % calculate and plot reduced models
% sorted modal truncation
loglog(f,mag(index_out,’),’k-',f,mag_sort_red(index_out,’),'k.-")
title([headstr ', sorted modal truncation: gap displacement, first |, ...
num2str(num_modes_used),’ modes included'])
legend('all modes','sorted partial modes',3)
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-8 le-4])
grid off
disp(‘execution paused to display figure, "enter" to continue'); pause
hold on
for pent = 1:max_modes_plot
index = 2*pcnt;
amode = a_sort(index-1:index,index-1:index);
bmode = b_sort(index-1:index);
cmode = cdisp_sort(7:8,index-1:index);
dmode = [0];

sys_mode = ss(amode,bmode,cmode,dmode);

[mag_mode,phs_mode]=bode(sys_mode,frad) ;




Chapter 17 SISO Disk Drive Actuator Model 3 «

%

%

loglog(f,mag_mode(index_out,:),'’k-")
end
axis([500 25000 -inf 1e-4])
disp(‘execution paused to display figure, "enter" to continue'); pause
hold off
modred using ‘'mdc'
loglog(f,mag(index_out,:),'k-',f,mag_mdc(index_ou#:),'k.-')
title([headstr ', reduced matched dc gain: gap displacement, first ", ...
num2str(num_modes_used),’ sorted modes included'])
legend(’all modes','reduced mdc',3)
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-8 le-4])
grid off
disp(‘execution paused to display figure, "enter" to continue'); pause
hold on
for pcnt = 1:max_modes_plot
index = 2*pcnt;
amode = a_sort(index-1:index,index-!:index);
bmode = b_sort(index-1:index);
cmode = cdisp_sort(7:8,index-1:index);
dmode = [0];
sys_mode = ss(amode,bmode,cmode,dmode);
[mag_mode,phs mode]=bode(sys_mode,frad) ;
loglog(f,mag_mode(index_out,:),’k-")
end
axis([ 500 25000 -inf 1e-4])
disp(‘execution paused to display figure, "enter" to continue'); pause
hold off

modred using 'mdc' with unsorted modes

loglog(f,mag(index_out,:),’k-",f,mag_mdc_posort(index_out,:),’k.-")

title([headstr ', reduced unsorted matched dc gain: gap displacement, first ', ...




518 Vibration Simulation Using MATLAB and ANSYS

num2str(num_modes_used),' sorted modes included'])
legend('all modes','reduced mdc',3)

xlabel('Frequency, hz')
ylabel('Magnitude, mm")
axis([500 25000 1e-8 1e-4])
grid off
disp(‘executioh paused t(; display figure, "enter” to continue'); pause
hold on
for pent = L:num_modes_used
index = 2*pcnt;
amode = a(index-1:index,index-1:index);
bmode = b(index-1:index);
cmode = c_disp(7:8,index-1:index);
dmode = [0];
sys_mode = ss(amode,bmode,cmode,dmode);
[mag_mode,phs_mode]=bode(sys_mode,frad) ;
loglog(f,mag_mode(index_out,:),’k-")
end
axis([500 25000 -inf 1e-4])
disp(‘execution paused to display figure, "enter" to continue'); pause
hold off
end

% save the workspace for use in balred.m

save act8_data

Plots using the code above are discussed in the following sections.
17.8 Uniform and Non-Uniform Damping Comparison

The four figures below show a comparison between the uniform and non-
uniform damping cases. The first two depict uniform damping, while the
second two show non-uniform damping, with higher damping for modes 11,
12 and 13.




Chapter 17 SISO Disk Drive Actuator Model L 519

head 0, gap displacement, all 50 modes included

PR .

10—

Magnitude, mm
=]
&
T
—g
- —

Frequency, hz

Figure 17.33: Head 0 frequency response, all 50 modes included, uniform damping with
zeta = 0.005.

head 0, gap displacement, all 50 modes included

Magnitude, mm

Frequency, hz

Figure 17.34: Head 0 frequency response, overlay of individual mode contributions, 50
modes included, uniform damping with zeta = 0.005.



520 Vibration Simulation Using MATLAB and ANSYS

head 0, gap displacement, all 50 modes included

10°} : 5
|

E i
p ‘
3 w0t ‘ 1
;
(0]
=

107} '

10° 10
Frequency, hz

Figure 17.35: Head 0 frequency response, all 50 modes included, non-uniform damping
with zeta = 0.005 for all modes except modes 11, 12 and 13, which have zeta = 0.04.

head 0, gap displacement, all 50 modes included

Magnitude, mm

Frequency, hz

Figure 17.36: Head 0 frequency response, overlay of individual mode contributions, 50
modes included, non-uniform damping with zeta = 0.005 for all modes except modes 11, 12

and 13, which have zeta = 0.04.

Note the lower gain of the three modes in the 4 to 5.5 khz range for the non-

uniform damping case.



Chapter 17 SISO Disk Drive Actuator Model

521

17.9 Sample Rate and Aliasing Effects

In the two figures below we can see the effects of aliasing for two different

servo system sample rates.

head 0, gap displacement, all 50 modes included, Nyquist frequency 10 hz
. . -

Magnitude, mm

| -

i — cgntinuous
—»— discrete

10
Frequency, hz

Figure 17.37: Discrete system frequency response overlaid on continuous system, sample
rate 20 khz, Nyquist frequency 10 khz.

4

head 0, gap displacement, all 50 modes included, Nyquist frequency 3.5 hz
: - —

10

Magnitude, mm

-8 1 1

— continuous
—e— discrete

10
10
Frequency, hz

L
0

1 4

Figure 17.38: Discrete system frequency response overlaid on continuous system, sample
rate 7 khz, Nyquist frequency 3.5 khz, showing aliasing effects.



522  Vibration Simulation Using MATLAB and ANSYS

The discrete system frequency response in Figure 17.37, which has a sample
frequency of 20 khz, shows only small differences from the original
continuous system response. The discrete system response stops at the
Nyquist frequency, 10 khz.

Unlike Figure 17.37, Figure 17.38, which has a much lower sample rate of 7
khz, shows a significant difference from the original continuous system. If
one uses the sampled system to experimentally measure the frequency
response, it can only measure the response in the 0-Nyquist frequency range.
If the discrete system shown in Figure 17.33 were measured, there would be
no way to know that the peak at 2.68 khz is not an actual mechanical
resonance at 2.68 khz but is the system mode at 4.32 khz which is aliased. As
mentioned earlier, only a measurement using a separate system, such as a laser
measurement system, will reveal the actual mechanical system response.

17.10 Reduced Truncation and Matched dc¢ Gain Results

This section compares sorted reduced truncation and sorted match dc gain
(mdc) methods, both using eight modes.

head 0, sorted modal truncation: gap dispiacement, first 8 modes included

N

Magnitude, mm
=
7

10 f
— all modes
—e— sorted partiat modes
8 —— T

10°

107

Frequency, hz

Figure 17.39: Reduced sorted modal truncation frequency response, eight modes included.



Chapter 17 SISO Disk Drive Actuator Model 523

head 0, sorted modal truncation: gap displacement, first 8 modes included

Magnitude, mm

— all modes
soned partlal modes

Frequency, hz

Figure 17.40: Reduced sorted modal truncation frequency response, eight modes included,
showing overlay of eight individual modes.

The reduced sorted truncated system shown in Figures 17.37 and 17.38
matches the original 50-mode system frequency response quite well in the
0 to 10 khz range, but misses four modes between 10 and 20 khz.

rlead 0, reduced matched dc gain: gap displacement, first 8 sorted modes included
10 - T T

Magnitude, mm

— all modes
oL reduced mdc
10°

Frequency, hz

Figure 17.41: Reduced “modred” matched dc gain frequency response, eight modes
included.



524  Vibration Simulation Using MATLAB and ANSYS

b‘ead 0, reduced matched dc gain: gap displacement, first 8 sorted modes included
0 T

1

Magnitude, mm

-8
| — all modes
—— reduced mdc
3 4

10 10
Frequency, hz

Figure 17.42: Reduced “modred” matched dc gain frequency response, eight modes
included, showing overlay of eight individual modes.

The reduced “modred” matched dc (mdc) gain frequency response is virtually
identical to the reduced sorted modal truncation response because the modes
were sorted prior to using the matched method and the modes which were
eliminated have low dc gain relative to the rigid body gain. Also, since the
eliminated modes have such a small contribution to the overall response, the
“flat” high frequency portion of the curve (highlighted in Figures 15.15 and
16.17) is not seen. To be sure that this was the case, the “modred” matched
dc gain reduction was run on the system with unsorted modes, using the first
eight modes. The results are shown below and show that the “flat” high
frequency portion of the frequency response has returned.



Chapter 17 SISO Disk Drive Actuator Model

525

head 9 reduced unsorted matched dc gain: gap displacement, first 8 sorted modes included
10 . : B

Magnitude, mm

10

107

— all modes
—=— reduced mdc
-8 — L

10

T

10° 10
Frequency, hz

Figure 17.43: Unsorted Reduced “modred” matched dc gain frequency response, first

heaqd(), reduced unsorted matched dc gain: gap displacement, first 8 sorted modes included

/\J\AL.

Magnitude, mm

eight unsorted modes included.

[ — @il modes
- —e— reduced mdc

T
10° 10
Frequency, hz

Figure 17.43: Unsorted Reduced “modred” matched dc gain frequency response, first

eight unsorted modes included, showing overlay of eight individual modes.

Only eight modes were used for the reduced frequency responses in this

chapter. In Chapter 18 we will compare responses for different number of
reduced modes to get a sense for how many modes are required to define the
pertinent dynamics.



CHAPTER 18

BALANCED REDUCTION
18.1 Introduction

In this chapter another method of reducing models, “balanced reduction,” will
be introduced. We will compare it with the dc and peak gain ranking methods
using the disk drive actuator/suspension model from the last chapter.

We have developed a strong mental picture of ranking individual modes using
dc and peak gains. Furthermore, we have developed the ranking method
intuitively by graphically showing how the individual modes combine to create
the overall frequency response.

The concepts of controllability and observability, commonly referenced in the
control community, can be used to rank modes but there is some ambiguity
involved. In general, the controllability of a given mode is not related to its
observability, and vice versa. The balanced reduction technique
simultaneously takes into account both controllability and observability in its
ranking and overcomes the uncertainty involved in using either controllability
or observability alone.

We will see that for the SISO actuator model introduced in the previous
chapter the balanced method provides slightly better impulse response results
than the dc gain method, for models with the same number of retained
modes/states. For frequency response, the balanced method fits one additional
mode over that of the dc gain method, in cases where the same number of
reduced modes are used for both methods.

One issue with balanced reduction is that we lose the ability to directly identify
individual modes in the reduced system model. After balanced reduction one
needs to examine the system matrix to identify which modes are included,
while the dc and peak gain ranking techniques retain the identities of the
individual modes.

Unlike SISO models, which can be easily ranked using simple dc and peak
gain techniques, MIMO models will require the balanced reduction method
because it easily handles the problem of ranking multiple inputs and outputs.
In the next chapter we will examine a MIMO example, a disk drive actuator
with a second stage of actuation in addition to the voice coil motor.



528  Vibration Simulation Using MATLAB and ANSYS

Gawronski [1996, 1998] are two excellent advanced level texts that cover
balanced reduction and balanced control of structures for those interested in
examining the subject more deeply.

18.2 Reviewing dc Gain Ranking, MATLAB Code balred.m
So far we have used dc or peak gains of the individual modes to rank the

importance of including each mode in the reduced system. Repeating (17.1)
and (17.2), the dc gain and peak gain expressions:

Zy  ZgiZyg

R L 18.1

E, o sl S (18.1)
Z; -j . ‘
— = —(dcgain}), : 18.2
R, g, e s

where z,z,; is the product of the jth (output) row and kth (force applied)

row terms of the ith eigenvector divided by the square of the eigenvalue for the
ith mode.

For any mode, if the degree of freedom associated with the applied force
has a zero value, then the force applied at that degree of freedom cannot
excite that mode, so the dc and peak gains will also be zero. If the mode
cannot be excited, then it has no effect on the frequency response and can
be eliminated. Similarly, if the degree of freedom associated with the
output has a zero value, then no matter how much force is applied to that
mode, there will be no output. The dc and peak gains are zero, and the
mode can be eliminated because it also will have no effect on the
frequency response.

Loosely speaking, a mode which cannot be excited by the applied force is
uncontrollable and a mode which has no output in the desired direction is
unobservable. Conversely, modes which have “large” values for the forcing
function degree of freedom are said to be “controllable” and modes with
“large” values for the output degree of freedom are said to be “observable.”

The code below, the input section from balred.m, reads in the stored output
from act8.m (Chapter 17), stored in act§_data.mat. It then calculates and
plots the input and output contributors to the dc gain, z,,/®, and z,/o,

and the resulting dc gain. This is the first time we have separated the input
and output contributors to the dc gain term; in the past we have dealt only with
the dc gain itself. The reason we are highlighting the two contributors is to



Chapter 18 Balanced Reduction 529

bridge to understanding of the new concepts of controllability and
observability.

% balred.m balanced modred reduction of actuator/suspension model
clear all;
hold off;
clf;
load act8 data,
% plot dc gain and two contibutors, force and xn, versus mode
index_states = 1:num_modes_total-1;
omegal = 2*pi*freqvec’; % convert to radians
semilogy(index_orig(2:num_modes_total)-1,gain_h0(2:num_modes_total),’k.-', ...
index_orig(2:num_modes_total)-1,abs(force(2:num_modes_total)./ ...
omegal(2:num_modes_total)),'’k-, ...
index_orig(2:num_modes_total)-1, ...
abs(xn(8,2:num_modes_total)./omegal(2:num_modes_total})),'ko-")
title([headstr ' dc gain, force and xn values versus mode number'])
xlabel('mode number')
ylabel('dc value')
legend('dc gain','force’,'xn',3)

grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

Figure 18.1 shows the force and output (xn) components which when
multiplied create the dc gain for each mode.




530 Vibration Simulation Using MATLAB and ANSYS

head 0 dc gain, force and xn values versus mode number

]
B 10°
[$]
h~]
107 ‘ L ‘
4 S
{ [
-12
e \ ]
; force 'S P
xn
10-14 - 1 /—‘—J
0 5 10 15 20 25 30 35 40 45 50
mode number
\ Figure 18.1: Force, output and de¢ gain for each mode.

It is evident from the curves of force and xn in Figure 18.1 that none of the
modes has values for the input or output that go to zero, but that there is a
three to four order of magnitude span for both the force and xn values. This
three to four order of magnitude span for the force and xn vectors, when
multiplied, results in an approximate seven order of magnitude span for the dc
gain. We have used this span in dc gain values in previous chapters to rank
the relative importance of modes, identifying modes for elimination.

" 18.3 Controllability, Observability

The intuitive descriptions of controllability and observability given above can
be stated precisely using standard state space notation. See Chen [1999],
Zhou [1996, 1998], Kailath [1980] and Bay [1999] for derivations and more
detail.

For a state space system described by

x = Ax+Bu

18.3a,b
y=Cx (18.3a,b)

the following definitions of controllability hold:

1) If there is an input “u” that can move the system from some
arbitrary state X, to another arbitrary state x, in a finite time then

the system is controllable.



Chapter 18 Balanced Reduction 531

2) A controllability matrix C can be formed as:
C=[B AB A’B...A"'B] O (184)

If C has full (row) rank n, the system is controllable. The
controllability matrix gives no insight into the relative
controllability of the different modes, it shows only whether the
entire system is controllable or not. If one mode of the system is
not controllable, the system is not controllable.

3) Another definition of controllability involves the controllability
gramian, W_, the solution to the Lyapunov equation:

AW, + WA" + BB" =0 (18.5)
defined as: b
W, = [e*" BBe* " dr (18.6)

0

If the solution W_(t) is non-singular (determinant is non-zero),
then the system is controllable.

Diagonal elements of the controllability gramian give information
about the relative controllability of the different modes and can be
used in a manner similar to our use of dc gains to rank the relative
controllability of individual modes.

Gramians exists only for systems that have all their poles strictly to
the left of the “jo” axis. The actuator/suspension system we are

analyzing has two rigid body mode poles at the origin, so we will
have to analyze only the oscillatory portion of the system. We will
do this by partitioning the modal form state matrices into the rigid
body mode and the non-rigid body oscillatory modes. Then the
definitions of controllability will be applied to only the oscillatory
partition.

A similar set of definitions can be made for observability:



532  Vibration Simulation Using MATLAB and ANSYS

1) If the initial state x, of a system can be inferred from knowledge
of the input u and the output y over a finite time (0,t) then the

system is said to be observable.
2) An observability matrix O can be formed as:

C

CA
0= (18.7)

CAn—l

If O has full (column) rank n, the system is observable.

3) Another definition of observability involves the observability
gramian, W, the solution to the Lyapunov equation:

AW, +WA+C'C=0 ~  (188)

defined as:

oo

W = je"” CTCe* dt T (18.9)

o
0
If the solution W, (t) is non-singular (determinant is non-zero) then
the system is observable.

The diagonal elements of the observability gramian give information
about the relative observability of the different modes and can be
used in a manner similar to using dc gains to rank the relative
observability of modes.

Because we know the form of the A, B and C matrices for the state space
modal form, we are able to substitute those matrices into the Lyapunov
equations above and derive closed form controllability and observability
gramians (Gawronski 1998). It is interesting to see how the closed form
gramian expressions compare with the force and xn components of the dc and
peak gains. We saw earlier that the dc gain can be looked at as a product of a
“force” and an “output,” xn.



Chapter 18 Balanced Reduction 533

z.z. (z. .
i _ Pwifma [_’_”L] [i] = (output)(force), (18.10)
o

i

Similarly for the peak gain at resonance:

z;| (dc gain) 1 Zoj | Zyg Zji Z i
S| _A\vet ) Doki | — —= | (18.11
E, 28, 2, [ o; J{ o, ] [ 2G, o, ][\/Zm] ( )

Gawronski shows that the closed loop expression for the largest diagonal term
in the 2x2 controllability gramian for mode “i” is given by:

s m 18.1
¢ ICimi ( )

where the || ”2 notation represents the Euclidean norm, the square root of the

sum of the squares of the elements of a vector.

The largest diagonal term in the 2x2 observability gramian for mode “i” is
given by:

W:M R PR
T 4o '

The smaller of the two diagonal terms for both the controllability and
observability gramians is derived from the larger term by dividing by the

square of the eigenvalue for that respective mode.

The B and C matrices for mode “i” with input at dof “k” and displacement
output at dof “j”” are as follows:

o)
B, = (18.14)

C =[z; 0] (18.15)



534  Vibration Simulation Using MATLAB and ANSYS

Substituting into the two equations above for the closed loop gramians:

0 -
Fanki

2

2
B. 272
L= " 1"2 _ 2 _ EZyi (18.16)
4C.vi0‘)i 4Ciwi 4Cimi
L oLz
ek s Of, _ 2 (18.17)
* 4Ci('0i 4Ciwi 4cimi
Comparing the peak gain terms and the gramian terms:
Force component of dc gain: o P (18.18)
No)
2
Controllability diagonal: 2o (18.19)
450,
Z ..
Output component of dc gain: 2 (18.20)
2o,
zzu
Observability diagonal: = (18.21)
40w,

When we have ranked using peak gains, we have used the expression:

. ZiZoki
peak gain = m (1822)

If we had used the controllability and observability gramian terms for each
mode to rank, we would have ranked based on
Zrznkiziji (18.23)
16870 '

In the controllability and observability gramian ranking of modes, we deal
with the product of the squares of the eigenvector components while peak gain
uses the product without squaring. Both rankings divide by the square of the

eigenvalue and there is a difference in the two multipliers “2” and “16” as well
as the squaring of the damping term.



Chapter 18 Balanced Reduction - 535

18.4 Controllability, Observability Gramians

The following code section starts by defining a system which consists of the
oscillatory modes of the system, excluding the first, rigid body mode. As
mentioned above, gramians exist only for strictly stable systems, where all the
poles strictly to the left of the “jw™ axis. The two rigid body poles at the

origin need to be eliminated from the system to be able to calculate gramians.
In the modal form of the equations, where the modes are uncoupled, we can
partition the system into rigid body and oscillatory modes. We can then
calculate a reduced oscillatory system based on reducing the oscillatory
modes. The full system is then ready to be re-assembled by augmenting the
rigid body mode with the reduced oscillatory modes.

The controllability and observability gramians are calculated, plotted with
their amplitudes on the z axis and then the diagonal entries are plotted. The
position and velocity state terms are identified in each of the gramians and
plotted separately.

% define oscillatory system from unsorted model from act8.m, which only

% has one output, either head 0 or head 1 so that when use balreal, will only

% be taking into account a siso system, not the outputs of both heads 0 and 1

% in act8.m, used output matrix with two rows so both head 0 and head | were available
a_syso = a(3:asize,3:asize); % ao is a for oscillatory system

b_syso = b(3:asize);
c_syso = c¢_disp(index_out+6,3:asize);
syso = ss(a_syso,b_syso,c_syso,d);
% define controllability and observability gramians for oscillatory system, syso
wc = gram(8yso,'c');
wo = gram(syso,'0');
[row_syso,col_syso] = size(a_syso);
statevec = 1:row_syso;
% calculate closed form gramians
% define frequencies for oscillatory states

omegal = 2*pi*freqvec’; % convert to radians




536 Vibration Simulation Using MATLAB and ANSYS

%
%

%

ctr=0;

for cnt=1:num_modes_total
ctr=ctr+2;
omegal2(ctr-1) = omegal (cnt);
omegal2(ctr) = omegal{cnt);
zeta_unsortl2(ctr-1) = zeta_unsort(cnt);
zeta_unsortl2(ctr) = zeta_unsort(cnt);

end

the notation below is “wc” or “wo” for controllability or observability gramians,
“cf” for closed-form, and “1” or “2” for maximum and minimum values for a mode

wecefl = (b_syso.*b_syso)./(4*zeta_unsort12(3:2*num_modes_total)' ...
¥omegal2(3:2*num_modes_total)’); % maximum terms

wecefl2 = weefl(2:2:row_syso); % pick out velocity terms

weef2 = (b_syso.*b_syso)./(4*zeta_unsort12(3:2*num_modes_total)' ...
*omegal2(3:2*num_modes_total)'.*3); % minimum terms

weef22 = weef2(2:2:row_syso); % pick out displacement terms

wocfl = (c_syso.*c_syso)./(4*zeta_unsort12(3:2*num_modes_total) ...
*omegal2(3:2*num_modes total)); % maximum terms

wocfl2 = wocfl(1:2:row_syso); % pick out displacement terms

wocf2 = (c_syso.*c_syso)./(4*zeta_unsort12(3:2*num_modes_total) ...
*omegal2(3:2*num_modes_total}."3); % minimum terms

wocf22 = wocf2(1:2:row_syso); % pick out velocity terms
plot controllability and observability gramians

meshz{wc);

view(60,30);

title([headstr ', controllability gramian for oscillatory system'])
xlabel('state")

ylabel('state’)

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

meshz(wo);

view(60,30);

title([headstr ', observability gramian for oscillatory system'])
xlabel('state")

ylabel('state’)




Chapter 18 Balanced Reduction giee 537

%

%
%

%

grid on

disp('execution paused to display figure, "enter" to continue'); pause
pull out diagonal elements : "

wc_diag = diag(we); - . R

wo_diag = diag(wo);

modevec = 2*(1:num_modes_total-1);

plot diagonal terms of controllability and observability gramians, calculated with
gram function and closed form

semilogy(statevec,wc_diag,'k.-',statevec(2:2:row_syso),wccfl2,'ko, ...
statevec(1:2:row_syso),wcef22,'ko")

title([headstr ', controllability gramian diagonal terms'])

xlabel('states")

ylabel('diagonal’)

legend('calculated with gram','closed form',3)

grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

semilogy(statevec,wo_diag,'k.-',statevec(1:2:row_syso),wocfl2,'’ko’, ...
statevec(2:2:row_syso),wocf22,'ko")

title(Theadstr ', observability gramian diagonal terms'])

xlabel('states")

ylabel('diagonal')

legend('calculated with gram','closed form',3)

grid off

disp(‘execution paused to display figure, "enter" to continue'); pause
position and velocity states plotted separately

semilogy(statevec(1:2:row_syso),wc_diag(1:2:row_syso),'’k.-', ...
statevec(2:2:row_syso),we_diag(2:2:row_syso),’k-' ...
statevec(2:2:row_syso),weefl2,'ko), ...
statevec(1l:2:row_syso),wcef22,'ko")

title([headstr ', controllability gramian diagonal terms'])

xlabel('states")

ylabel('diagonal')

legend('position states','velocity states','closed form','closed form',3)

grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

semilogy(statevec(1:2:row_syso),wo_diag(1:2:row_syso),’k.-, ...
statevec(2:2:row_syso),wo_diag(2:2:row_syso),'’k-, ...
statevec(1:2:row_syso),wocf12,'ko, ...
statevec(2:2:row_syso),wocf22,'ko")

title([headstr ', observability gramian diagonal terms'])

xlabel('states')




538 Vibration Simulation Using MATLAB and ANSYS

ylabel('diagonal’)
legend("position states','velocity states','closed form','closed form',3)
grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

semilogy(index_states,we_diag(2:2:row_syso), k.-, ...
index_states,wo_diag(1:2:row_syso),'’ko-")

title([headstr ', head 0 controllability and observability state gramians'])

xlabel('mode number")

ylabel('gramian')

legend('controllability velocity state','observability position state',3)

grid off

disp(‘execution paused to display figure, "enter” to continue'); pause

head O, controllability gramian for oscillatory system

state state

Figure 18.2: Controllability gramian values.




539

Chapter 18 Balanced Reduction

head 0, observability gramian for oscillatory system

state state

Figure 18.3: Observability gramian values.

Figures 18.2 and 18.3 plot the controllability and observability gramian values
on a linear z axis scale versus location in the matrix. As noted in Gawronski
[1998], for systems described in modal coordinates (with small damping, small
{ values) the gramians are diagonally dominant, meaning that the off diagonal

elements are small with respect to the diagonal elements. The largest
controllability terms lie along the diagonal in approximately the state 20 to 22
positions, which are the 10™ and 11™ oscillatory modes. With the rigid body
mode included, these become the 11" and 12" modes of the full system, which
we identified in the previous chapter as the two system modes in the 4 khz
range and identified with the dc gain as the modes with the highest values.
Note that there are not any large entries in the higher state numbers for the
controllability gramian. The observability gramian plot, however, shows some
very high frequency states (~80 to 100) that have circumferential motion at
head 0. Intuitively, the relatively heavy coil is not going to have many modes
with circumferential motion at high frequencies, while the stiff, low mass
suspension will have a number of high frequency modes with circumferential
motion.

The diagonal entries of both gramians are plotted versus state in Figures 18.4
and 18.5, where the odd-numbered states are position states and the even-
numbered states are velocity states. Values from the “gram” function and the
closed form solution (18.16) (18.17) are shown.



ng MATLAB and ANSYS

head 0, observability gramian diagonal terms
T T T T T

w o, b4 T ko R
000000

= - = - =2 -

540 Vibration Simulation Usi

IvVes are

and velocity terms of each gramian -

state and velocity state cu

of each mode.

ely. The position

Figures 18.6 and 18.7 show the position
al plotted separat

diagon

alue

of the eigenv

offset by the square



Chapter 18 Balanced Reduction

541

o head 0, controllability gramian diagonal terms

10 —T -

diagonal
-
o

—e— position states |
— welocity states
O closed form
O closed form
T

TS

0 10 20 30 40 50 60 70

Figure 18.6: Controllability gramian diagonal position and velocity state terms.

80

90

100

o ) head 0, observabifity gramian diagonal terms

©
[~
=]
o
8
© -
10 10‘ i
10"°H ~o position states | 1
— welocity states
O closed form
O closed form
10'20 Il - 1 B I | 1 L (S E—
0 10 20 30 40 50 60 70 80 0 100

states

Figure 18.7: Observability gramian diagonal position and velocity state terms.

18.5 Ranking Using Controllability/Observability

Figure 18.8 shows the controllability gramian velocity state and the
observability gramian position state (chosen such that the two curves have
similar magnitudes for visual comparison). We could use the controllability
curve to rank the states for controllability and eliminate those states with low
controllability. Alternately, we could use the observability curve to rank the
states for observability and then eliminate states with low observability. The



542  Vibration Simulation Using MATLAB and ANSYS

problem with this approach is that the joint controllability/observability is not
taken into account. There is no problem if a state chosen for elimination has a
small controllability value and simultaneously a small observability value.
However, if as in modes 43 and 44 (states 85 to 88) in Figure 18.8, the
controllability value is small but the observability is relatively high, do we
eliminate the mode or not? This is the source of ambiguity in ranking using
only controllability or only observability gramians.

With the dc and peak gain ranking methods referenced earlier we used the
product of the input and output (controllability measure and observability
measure), jointly taking into account a measure of the controllability and
observability of each mode.

head 0, head 0 contvo"ablhty and observability state gramlans

—e— controllability velocity state \ |
- observablllty posmon state 1
10‘ ,,,,,,, L L L 1 i

0 5 10 15 20 25 30 35 40 45 50
mode number

Figure 18.8: Controllability gramian velocity state and observability gramian position
state diagonal terms.

18.6 Balanced Reduction

Balanced reduction was introduced in the control community by Moore
[1981]. The algorithm used in the MATLAB balancing function “balreal” is
taken from Laub [1987].

The algorithm creates a system with identical diagonal controllability and
observability gramians. Since the two gramians are equal, either the diagonal
or controllability gramian can be used to rank states for elimination and the
ambiguity of using either only controllability or only observability is removed.



Chapter 18 Balanced Reduction -+ - - 543

For the system “sys” defined by the following equations:

x = Ax+Bu
(18.24a,b)
y =Cx+Du
the syntax for the MATLAB “balreal” function is:
[sysb,g, T, Ti] = balreal(sys), (18.25)

€6

where “sysb” is the new, balanced system and “g” is the diagonal of the joint
gramian. “T” is the transformation matrix that is used to create “sysb.” “Ti”
is the inverse of “T.”

The diagonal terms of the joint gramian, g, are squares of the Hankel singular
values of the system. The Hankel matrix is the product of the controllability
and observability gramians. Hankel singular values are the squares of the
eigenvalues of the Hankel matrix. See Gawronski [1998] for a MATLAB
script “bal_op_loop.m” that uses Singular Value Decomposition to calculate
the Hankel singular values.

T is the state transformation matrix that is used along with its inverse, T™', to
create “sysb” from “sys” using;:

x, = TAT 'x, +TBu

(18.26a,b)
y =CT'x, +Du

The gramians are also transformed by T to identical diagonal form:
Wbu = Wbc = dlag(g) (1827)

Because the controllability and observability gramians are identical, there is
no ambiguity in deciding whether the most controllable or the most observable
states should be chosen. The states to be kept are the states with the largest
diagonal terms.

The code below uses “balreal” to calculate the balanced system, “sysob,” and
plots the resulting gramians.

% use balreal to rank oscillatory states and modred to reduce for comparison

[sysob,g,T,Ti] = balreal(syso);




544  Vibration Simulation Using MATLAB and ANSYS

% define controllability and observability gramians for balanced
% oscillatory system, sysob

wcb = gram(sysob,'c');
wob = gram(sysob,'0");
web_diag = diag(wcb);
wob_diag = diag(wob);
modevec = 2*(1:num_modes_total-1);
% plot balanced controllability and observability gramians

meshz(wcb);

view(60,30);

title([headstr ', oscillatory system balanced controllability gramian'])
xlabel('state")

ylabel('state")

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause

meshz(wob);

view(60,30);

title([headstr ', oscillatory system balanced observability gramian'])
xlabel('state")

ylabel('state")

grid on

disp(‘execution paused to display figure, "enter" to continue'); pause
% plot diagonal terms of balanced controllability and observability gramians

semilogy(statevec,wcb_diag,'k.-',statevec,wob_diag,'ko-")

title([headstir ', balanced system controllability and observability gramian ...
diagonal terms'])

xlabel('states")

ylabel('diagonal’)

legend('controllability','observability',3)

grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

Figures 18.9 and 18.10 plot terms of the controllability and observability
gramian matrices for the balanced system, with the values plotted along the z
axis. Comparing them to the original, unbalanced, controllability and
observability gramian plots in Figures 18.2 and 18.3, we see that the balanced
plots are identical and strictly diagonal.




545

hapter 18 Balanced Reduction

head 0, oscillatory system balanced controllability gramian

'state state

Figure 18.9: Balanced controllability gramian. 3

head 0, oscillatory system balanced observability gramian 2

state state Lot

Figure 18.10: Balanced observability gramian.

Plotting diagonal terms of the controllability and observability gramians
versus states, Figure 18.11, shows that the two curves overlay one another and
that they are ranked from large to small by virtue of the balancing operations.



546  Vibration Simulation Using MATLAB and ANSYS

4 head 0, balanced system controllability and obsernvability gramian diagonal terms

10 @ - (i

T r T T

diagonal

10-14 L B
—e— controtlability .

-6 obsenability
‘

I s L 1 L L L '

0 10 20 30 40 50 60 70 80 90 100

Figure 18.11: Balanced system controllability and observability gramian diagonal terms.

We are now in a position to use the balanced system gramian (either
controllability or observability) to decide which states are relatively less
important and can be eliminated. Since the states in the balanced system are
organized from most to least significant, the MATLAB function “modred” can
be used with either the “del” or “mdc” option to eliminate the states with the
lowest joint controllability/observability, the higher numbered states in the
balanced system.

18.7 Balanced and dc Gain Ranking Frequency Response Comparison

The code in this section starts by plotting the Hankel singular values and the
sorted dc gain of the oscillatory modes to see their similarities. The modred
function is then used to reduce the system to the number of modes chosen in
the last act8.m run, using both the “del” and “mdc” options. The complete
system is then rebuilt by augmenting the reduced oscillatory system with the
rigid body mode. Finally, the code plots frequency responses and compares
the results of dc gain ranking from act8.m and balanced ranking from
balred.m.

% plot sorted diagonal values and dc gain
[row_syso,col_syso] = size(a_syso);

semilogy(statevec,g,'k.-',2*index_orig((2:num_modes_total)-1), ...
gain_h0_sort(2:num_modes_total),'’k-")

title([headstr ', sorted diagonal terms of balanced gramian and dc gain'l)

xlabel('state")




Chapter 18 Balanced Reduction - 1 - o : 547

%

%
%

%

ylabel('diagonal of gramian')

legend('balanced','dc gain',3)

grid off

disp(‘execution paused to display figure, "enter" to continue'); pause
num_oscil_states_used = 2*num_modes_used - 2;

use modred to reduce states from balanced system using both “del" and “mdc"
bsys_delo = modred(sysob,num_oscil_states_used+1:2*num_modes_total-2,'del’);

bsys_mdco = modred(sysob,num_oscil_states_used+1:2*num_modes_total-2,'mdc");

rebuild system by appending balanced realization of oscillatory modes to
rigid body mode

[a_delo_balb_delo bal,c_delo bal,d delo bal] = ssdata(bsys_delo);

a del bal=[ a(1:2,1:2)  zeros(2,num_oscil_states used)
zeros(num_oscil states used,2) a delo _bal ];

b_del bal = [b(1:2,:)
b_delo_bal);

c_del_bal = [c_disp(index_out+6,1:2) c_delo_bal];
bsys_del = ss(a_del bal,b_del_bal,c_del bal,d);
[a_mdco_bal,b_mdco_bal,c_mdco_bal,d_mdco_bal] = ssdata(bsys_mdco);

a_mdc_bal=[ a(l:2,1:2)  zeros(2,num_oscil_states_used)
zeros(num_oscil_states_used,2) a_mdco_bal ];

b_mdc_bal = [b(1:2,)
b_mdco_bal];

¢_mdc_bal = [c_disp(index_out+6,1:2) c_mdco_bal];
bsys_mdc = ss(a_mdc_bal.b_mdc_bal,c_mdc_bal,d);
[magr_del,phsr_del] = bode(bsys_del,frad);
[magr_mdc,phsr_mdc] = bode(bsys_mdc,frad);

compare frequency responses for all four reduction methods

loglog(f,mag(index_out,:),’k--',f,mag_sort_red(index_out,:),'’k-, ...
f,magr_del(1,:),'k.-")

title(fheadstr ', results comparison, ',num2str(num_modes_used),' modes, ', ...
num2str(num_oscil_states_used),’ oscillatory balanced states'])

xlabel('Frequency, hz'")

ylabel('Magnitude, mm')

axis([500 25000 1e-8 1e-4])

legend(‘all modes','sorted truncated','balreal modred del',3)




548 Vibration Simulation Using MATLAB and ANSYS

grid off
disp(‘execution paused to display figure, "enter" to continue'); pause

loglog(f,mag(index_out,:),’k--".f,mag_mdc(index_out,:),’k-".f;magr mdc(1,:),'k.-"

title([headstr ', results comparison, ',num2str(num_modes_used),' modes, ', ...
num2str(num_oscil_states_used),' oscillatory balanced states'])

xlabel('Frequency, hz')

ylabel('Magnitude, mm'}

axis([500 25000 1e-8 1e-4])

legend(‘all modes','sorted mdc','balreal modred mde¢',3)

grid off

disp(‘execution paused to display figure, "enter” to continue'); pause

Figure 18.12 shows the Hankel singular values and sorted dc gains versus
number of states. At this point it is interesting to compare frequency responses
for the two ranking techniques to see how each decides which modes/states to
eliminate.

head 0, sorted diagonal terms of balanced gramian and dc gain

10 T 1 T v T T T T T
-
$ .
B L e 1
10 o

diagonal of gramian
3
=
J
!

10" 1
balanced

—-—
46| L—— degain | |
10 Il I L o L | I L L

4] 10 20 30 40 50 60 70 80 90 100
state

Figure 18.12: Balanced gramian diagonal terms (Hankel singular values) and sorted de
gain.

Figures 18.13 to 18.18 show frequency response plots for different numbers of
retained modes, from two to seven modes, including the rigid body mode.




Chapter 18 Balanced Reduction L : 549

While the code above calculates “sorted truncated” and “balreal modred del”
responses, we will only show the following in the figures below:

1) “sorted mdc” — uses dc gain ranking and modred “mdc” to
reduce

2) “balreal modred mdc” — uses balreal for ranking and modred
“mdc” to reduce

head 0, results comparison, 2 modes, 2 oscillatory balanced states

Magnitude, mm

— afl modes
— sorted truncated
{ —*— balreal modred dei

10 h
10
Frequency, hz
Figure 18.13: Two modes included.
head 0, results comparison, 3 modes, 4 osciilatory balanced states
107 ¢ : - ‘ -
o
10°k ) .
1
; R
@ ‘
£ 10° [ 1 -
£ / \
& b
= L 1 W \
107 / .
i &
— all modes ‘;‘ \
— sorted truncated
—e— balreal modred del
" re: il
10 ‘ 3 ‘ 4
10 10
Frequency, hz

Figure 18.14: Three modes included.



550  Vibration Simulation Using MATLAB and ANSYS

Note that the two ranking methods chose different modes for the three reduced
modes. The dc gain method chose the two system modes in the 4.2 khz range
(almost coincident) while the balanced method chose one mode at 4.2 khz and
another at 5.1 khz.

head 0, results comparison, 4 modes, 6 oscillatory batanced states
10 r .

Magnitude, mm
3

107 F

— all modes
—-- sorted truncated
o L= balreal modred del

10°

Frequency, hz
Figure 18.15: Four modes included.

For the four reduced mode case, the dc gain method picked up the 5.1 khz
mode, while the balanced method chose the suspension torsion mode at 2.9
khz.

head 0, results comparison, 5 modes, 8 oscillatory balanced states
107 e : :

Magnitude, mm
3
T

, — all modes
1 — sorted truncated

| —e— balreal modred del

10°

Frequency, hz

Figure 18.16: Fiv



Chapter 18 Balanced Reduction - © 551

For the five reduced mode case the dc gain method included the torsion mode
but missed the mode at 5.5 khz which was picked up by the balanced method.

head 0, results comparison, 6 modes, 10 osciilatory balanced states
10 T T =

Li

N

A
[=]
A
‘
.
R o
‘e tie—e
‘

Magnitude, mm

—_ o

07

— all modes
—— sorted truncated
L —e— baireal modred del
i

10° 10°

Frequency, hz

\»(\d\ .

I

107

Figure 18.17: Six modes included.

With six reduced modes the balanced method includes the mode at 9 khz, but
the dc gain method missed it.

head O, results comparison, 7 modes, 12 oscillatory balanced states
10 Ca B

f

:t‘l ,

|
!

o

Magnitude, mm
-
(=)
™

— allmodes
— sorted truncated
sl balreal modred del

a1
10°

Frequency, hz
Figure 18.18: Seven modes included.

With seven or higher modes the balanced and dc gain results are very simil:
We will see later when analyzing impulse responses of the oscillatory syste



552  Vibration Simulation Using MATLAB and ANSYS

that the two methods give results which are within a few percent of each other
when seven or more modes are included in the reduced model.

18.8 Balanced and dc Gain Ranking Impulse Response Comparison

This section will compare the impulse responses for four different reduced
systems, using from 2 through 15 modes. Only the matched dc gain (mdc)
methods will be compared as there are minimal differences between the mdc
method and the truncation or “del” method of reducing, as can be seen from
the eight reduced mode results below.

. head 0, results comparison, 8 modes, 14 oscillatory balanced states
107 — —- - —_—,—

e Yo~

—e

-
o
&
1

Magnitude, mm

— all modes
—— sorted truncated
sl balreal modred def

-
3 4

10
10
Frequency, hz

Figure 18.19: Frequency response for eight-mode reduced models, sorted truncated and
balreal modred “del.”



Chapter 18 Balanced Reduction 553

head 0, results comparison, 8 modes, 14 oscillatory balanced states
10 T . ——

Magnitude, mm

107 1

—— all modes
—— sorted mdc
o L batreal modred mdc
S

10—

10° 10*

Frequency, hz

Figure 18.20: Frequency response for 8-mode reduced models, sorted “mdc” and balreal
modred “mde.”

In studying the impulse response, we will use only the oscillatory modes. The
final model will of course include the rigid body mode, but to study the effects
of the various reduced models on transient response it is useful to include only
the oscillatory modes. The reason this is useful is that a typical forcing
function applied to a rigid body mode will move the system from one position
to another, with rigid body displacements quite large relative to the
displacements of the oscillatory modes, creating roundoff errors that mask the
oscillatory mode responses.

The code below calculates the impulse response using the “Isim” function for
five oscillatory systems, the original “all modes included” system and the four
reduced systems. The impulse responses are then plotted and the normalized
reduction index, & (Gawronski 1998), is calculated, where the index is
defined as:

|disp(all mode model)-disp(reduced model] (18.28)

||disp(all mode mode|)||

A table of results for 8 from earlier runs with different numbers of retained
modes is included in the code listing below. Information in the table is also
shown graphically in Figures 18.25 and 18.26.

% calculate impulse responses of all four oscillatory systems for comparison

ttotal = 0.0025;




554  Vibration Simulation Using MATLAB and ANSYS
t = linspace(0,ttotal, 400);
% define oscillatory systems for models
Y% sorted reduced system
red_size = 2*num_modes_used;
[a_sys sort red,b sys sort red,c sys_sort red,d_sys sort_red]=...
ssdata(sys_sort_red);
a_sys_sort_redo=a_sys_sort_red(3:red_size,3:red_size);
b_sys sort_redo="b_sys sort red(3:red_size};
c_sys_sort_redo =c_sys_sort_red(index_out,3:red_size);
sys_sort_redo = ss(a_sys_sort_redo,b_sys_sort_redo,c_sys sort_redo,d);
% sorted mdc reduced system
[a_sys_sort_mdc,b_sys_sort_mdc,c_sys_sort_mdc,d_sys_sort_mdc] =...
ssdata(sys_mdc);
a_sys_sort_mdc =a_sys sort red(3:red_size,3:red_size);
b_sys_sort_mdc =b_sys sort_red(3:red_size);
c_sys_sort_mdc = ¢_sys_sort_red(index_out,3:red_size);
sys_mdco = ss(a_sys_sort_mdc,b_sys_sort_mdc,c__sys_sort_mdc,A);
% use Isim to calculate transient response
[disp_syso,t_syso] = impulse(syso,t);
[disp_sys_sort_redo,t_sys_sort _redo] = impulse(sys_sort_redo,t);
[disp_sys_sort_mdco,t_sys_sort mdco] = impulse(sys_mdco,t);
[disp_bsys delo,t_bsys_delo] = impulse(bsys_delo,t);
.[disp_bsys_mdco,t_bsys_mdco] = impulse(bsys_mdco,t);
% build matrix of results

dispo = [disp_syso(:,1) disp_sys_sort_redo(;,1) ...
disp_sys_sort_mdco(:,1) disp_bsys_delo(:,1) ...
disp_bsys_mdco(:,1)];

sort_redo_del = dispo(:,1) - dispo(:,2);

sort_mdco_del = dispo(:,1) - dispo(:,3);




Chapter 18 Balanced Reduction

555

%

delo_del = dispo(:,1) - dispo(:,4);
mdco_del = dispo(:,1) - dispo(:,5);
calculate normalized reduction index

index_sort_redo= ...
sqrt(sum(sort_redo_del.*sort_redo_del))/sqrt(sum(dispo(:,1).*dispo(:,1)))

index_sort_mdco = ...
sqrt(sum(sort_mdco_del.*sort_mdco_del))/sqrt(sum(dispo(:,1).*dispo(:,1)))

index_delo= ...
sqrt(sum(delo_del.*delo_del))/sqrt(sum(dispo(:,1).*dispo(:,1)))

index_mdco = ...
sqrt(sum(mdco_del.*mdco_del))/sqrt(sum(dispo(:,1).*dispo(:,1)))

[num_modes_used index_sort_redo index_sort_mdco index_delo index mdco]

plot(t_syso,disp_syso(:,1),'’k-',t sys sort redo,disp_sys_sort_redo(:,1),'’k.-")
title([headstr ', displacement vs time, ',num2str(num_modes_used-1), ...
! oscillatory modes'])
xlabel('time, sec')
ylabel('displacement, mm")
legend('all modes','sorted reduced system',4)
grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

plot(t_syso,disp_syso(:,1),’k-',t_sys_sort_mdco,disp_sys_sort_mdco(:,1),k.-")
title([headstr ', displacement vs time, ',num2str(num_modes_used-1), ...
' oscillatory modes'])
xlabel('time, sec')
ylabel('displacement, mm')
legend('all modes','sorted modred mdc',4)
grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

plot(t_syso,disp_syso(:,1),’k-',t_bsys_delo,disp_bsys_delo(:,1),k.-")

title([headstr ', displacement vs time, ',num2str(num_oscil_states_used), ...
' oscillatory balanced states'])

xlabel('time, sec')

ylabel('displacement, mm")

legend('all modes','balreal modred del',4)

grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

plot(t_syso,disp_syso(:,1),’k-',t_bsys mdco,disp bsys_mdco(:,1),'’k.-")

title([headstr ', displacement vs time, ',num2str(num_oscil_states_used), ...
' oscillatory balanced states'])

xlabel('time, sec')

ylabel('displacement, mm')




556 Vibration Simulation Using MATLAB and ANSYS

%
%

legend('all modes','balreal modred mdc',4)
grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

plot results of oscillatory impulse response normalized error index versus
number of modes used

error_norm = [ 2 4332 4332 0.3007 0.3008
3 3041 .3041 0.1777 0.1823
4 1759 1759 0.1135 0.1137
5 1134 1134 0.0845 0.0841
6 .0851 .0851 0.0598 0.0603
7 0637 .0637 0.0582 0.0583
8 .0599 .0599 0.0383 0.0401
9

.0594 .0594 0.0343 0.0356

10 0572 0572 0.0338 0.0347
11 .0555 0555 0.0258 0.0264
12 .0392 .0392 0.0280 0.0268
13 .0327 .0327 0.0167 0.0168
14 .0270 0270 0.0162 0.0158
15 .0209 .0209 0.0162 0.0156];

nmode = error_norm(;,1);
error_sort_red = error_norm(:,2);
error_sort_mdc = error_norm(:,3);
error_bal_del = error_norm(:,4);
error_bal_mdc = error_norm(:,5);

plot(nmode,error_sort_red,'’k.-',nmode,error_bal_del,'ko-")

title([headstr ', normalized reduction index versus number of modes included'])
xlabel('number of modes included')

ylabel('normalized reduction index')

legend('sorted reduced','balanced del')

axis([0 150 0.5])

grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

plot(nmode,error_sort_mdc,'k.-',nmode,error_bal_mdc,'ko-")

title([headstr ', normalized reduction index versus number of modes included'])
xlabel('number of modes included’)

ylabel('normalized reduction index')

legend('sorted mdc','balanced mdc')

axis([0 15 0 0.5])

grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

save balred_data;




Chapter 18 Balanced Reduction 557

The impulse response comparisons for the same four reduced methods are
shown in the four figures below.

head 0, displacement vs time, 7 oscillatory modes
0.04 1 - T T

displacement, mm

-0.014

L,,
Bives ]
R
- m—kw
.t Af‘.,—fAfﬂ’_‘:”
,

.03 - .
oe - — all modes
. —=— sorted reduced system
-0.04 . L —

4} 0.5 1 15 2 25

time, sec X 10-3

Figure 18.21: Impulse response comparisons for oscillatory system, full model (all
oscillatory modes) and sorted reduced system with seven oscillatory modes.

head 0, displacement vs time, 7 oscillatory modes
0.04 T T T

0.03 . B

0.02 I ® f* i
* 3

~ '

: !

=3
Q
=
T
T

o

o

2
-
-

displacement, mm
(=]
+
o
oo .
Te—-e-9 o

-0.02 E

0031 — - all modes i
—e— sorted modred mdc
_004 s I 1 L "
0 0.5 1 1.5 2 2.5

time, sec x 10°

Figure 18.22: Impulse response comparisons for oscillatory system, full model (all
oscillatory modes) and sorted modred with “mdc” option with seven oscillatory modes.



558 Vibration Simulation Using MATLAB and ANSYS

head 0, displacement vs time, 14 oscillatory balanced states
0.04 —— T ;

0.03 E

by
\

0.03 — all modes f
—e— balreal modred del

0.04 : . .
0 05 1 15 2 25

time, sec X 10—3

(=3

o

=
T

disptacement, mm
—e-

<)
(=]
=4
= and
——
&
-
-
- > o9

Figure 18.23: Impulse response comparisons for oscillatory system, full model (all
oscillatory modes) and balreal modred “del” reduced system with seven oscillatory modes.

head 0, displacement vs time, 14 oscillatory balanced states
0.04 T T T T

-

displacement, mm
(=)
+
-

0.02 ‘é

— all modes
-+ balreal modred mde

0.045 ‘ ‘ :
0 05 1 15 2 25

time, sec x 10°

Figure 18.24: Impulse response comparisons for oscillatory system, full medel (all
oscillatory modes) and balreal modred “mdc” reduced system with seven oscillatory modes.

The two figures below compare the normalized reduction index, &, as a
function of the number of modes included in the various reduced model
methods.



“hapter 18 Balanced Reduction 559

head 0, nomalized reduction index versus number of modes included
0.5 — e :

—— sbned reduced
0.45| -o- balanced del

0.4 4

0.35} ]

0.3k ]
0.25} \ .
0.2 ‘ .
0,1#

01

normalized reduction index

0.05-

I L

0 5 10 15
number of modes included

Figure 18.25: Impulse response normalized reduction index versus number of modes
included in reduction for sorted reduced and balanced modred “del” option reductions.

head 0, normalized reduction index versus number of modes included

0.5 T T m—

--— sorted mdc
045 —©- balanced mdc |4
041 E

e
w
&
T
L

et

w
T

-
2

=3
]
T
.

normalized reduction index
o o
e N
W (4.4
T T
1 !

e
4
T
.

o
(=]
o
T
1

L 1
5 10 15
number of modes included

(=1

(=]

Figure 18.26: Impulse response normalized reduction index versus number of modes
included in reduction for sorted modred “mdc” and balanced modred “mdc” options
reductions.

As mentioned in the frequency response section, when five or more modes are
included, the impulse responses are almost identical for all reduction
techniques, with small differences in normalized reduction indices. For less
than five modes, it is better to use the balanced technique because it picks up
an additional mode in addition to the system mode, whereas the dc gain



560 Vibration Simulation Using MATLAB and ANSYS

method assigns the first two modes to the almost coincident two modes near
the system mode.



CHAPTER 19

MIMO TWO-STAGE ACTUATOR MODEL
19.1 Introduction

In this chapter we will use an ANSYS model of a two-stage disk drive
actuator/suspension system to illustrate the creation of a reduced model for a
Multiple Input, Multiple Output (MIMO) system using the balanced reduction
method. The results will seem somewhat anticlimactic since the previous
chapter covered most aspects of how to use the balanced reduction method.
However, understanding the mechanics of setting up a MIMO system should
prove useful.

As the track density (tracks per inch, tpi) of disk drives continues to increase,
it will be necessary to add a second stage of actuation to the system in order to
have the high servo bandwidths required to accurately follow the closely
spaced tracks. Many different types of two-stage actuator architectures are
being explored. The actuator architecture used for this example is not meant
to represent a practical embodiment but will serve to illustrate a two-input,
two-output system.

We will begin with descriptions of the actuator system and ANSYS model.
Then, ANSYS output, mode shape plots, frequency responses and a partial
eigenvector listing will be discussed. The pertinent eigenvector and
eigenvalue information will be extracted into a .mat file for input to
MATLAB.

The MATLAB code will calculate either dc or peak gains, depending on
whether uniform or non-uniform damping is defined. There are four gains to
be plotted for this two-input, two-output MIMO system. While dc and peak
gains are not required for the “balreal” and “modred” model reduction, they
will serve to bridge our understanding from SISO models to MIMO models.
We will see the difficulty of choosing which modes to include in a MIMO
model using dc or peak gain sorting by discussing the ranking of modes for the
four input/output combinations.

In order to perform a balanced reduction, the system is partitioned into rigid
body and oscillatory modes, similar to the method used in Chapter 18. The
oscillatory modes are balanced and “modred” is used with both the “del” and
“mdc” options to reduce the model. Frequency responses for head 0 for both
coil and piezo inputs for “del” reduction are shown for various numbers of



562 Vibration Simulation Using MATLAB and ANSYS

reduced modes, from 6 oscillatory states to 20 oscillatory states included. The
20-state case shows both “del” and “mdc” for comparison.

Impulse responses are calculated for oscillatory systems with various numbers
of reduced modes retained. The error is plotted as a function of number of
modes retained.

19.2 Actuator Description

Figure 19.1 shows top and cross-sectioned side views of the two-stage actuator
used for the analysis.

Adhesive

Micro-actuator

Voice Coil Motion

Ball Bearing

/— Ball Bearing "Hinge"

Suspension N
1 777778 1 =0

_—> x
Recording

o o

Disk

VCM Force

Actuator Shaft

Figure 19.1: Drawing of actuator/suspension system.

The model is similar to the actuator used in Chapters 17 and 18 except that the
arms are now the same thickness and are symmetrically located with respect to
the pivot bearing z axis centerline. Also, there is now a piezo-actuator bonded
into one side of each of the arms. The piezo actuator consists of a ceramic
element that changes size when a voltage is applied. In this case, the voltage
would be applied to the piezo element so that it changes length, creating a
rotation about the “hinge” section in the other side of the arm. This rotation
translates the recording head in the circumferential direction. When this “fine
positioning” motion is used in conjunction with the VCM’s “coarse
positioning” motion, higher servo bandwidths and consequently higher tpi are
possible.



Chapter 19 MIMO Two-Stage Actuator Model 563

The actuator example in the last two chapters had a coil forcing function
applied at four nodes in the coil body. Even though there were multiple points
at which the force was applied, the fact that the same force was applied to all
nodes defined a Single Input system.

Instead of applying voltage as the input into the piezo element, we will assume
that we have calculated an equivalent set of forces which can be applied at the
ends of the element that will replicate the voltage forcing function. In this
model, we will be applying forces to multiple nodes at the ends of both piezo
elements. Since the same forces are being applied to both piezo elements,
they represent the second input to the now Multi Input system, the first input
being the coil force. We will apply equal and opposite forces to the two ends
of each piezo actuator, and reverse the signs of the forces applied to the two
separate elements. If the same forcing function were applied to both elements,
an inertial moment arises which would tend to rotate the entire actuator about
the pivot. By using opposite signs for the two arms, this moment is largely
eliminated, generating less cross-coupling between the coarse and fine
actuator inputs.

In order to make this example a “Multiple Output” system, we will output the
displacements of both lower and upper heads, head 0 and head 1.

19.3 ANSYS Model Description
The model description is the same as for the model in Chapter 17. The

ANSYS model is shown below, along with a drawing showing the node
locations for the coil, piezo elements and heads.



64  Vibration Simulation Using MATLAB and ANSYS

Piezo Actuator/Suspension Model

Figure 19.2: Complete piezo actuator/suspension model.

AN

Piezo Actuator/Suspension Model

Figure 19.3: Piezo actuator/suspension model, four views.




Chapter 19 MIMO Two-Stage Actuator Model . 565

20.4549°

/ Node 24087

6 Nodes each arm

Node 24082 (3 top/3 bottom)

13.5298°

~ 6 Nodes each arm

x (3 top/3 bottom)

XL 15.1857° Node 24066
9.1148° Node 22, top head
Neode 10022, bottom head
Node 24061

Figure 19.4: Nodes used for reduced MATLAB model, shown with partial mesh at coil and
piezo element.

Since the model uses cylindrical coordinates, the coil and piezo forces are at
an angle to the radial line joining the pivot bearing centerline to the node

location. Both coil and piezo element forces are decomposed into radial and
circumferential elements using the angles shown for each in Figure 19.4.

19.4 ANSYS Piezo Actuator/Suspension Model Results
19.4.1 Eigenvalues, Frequency Response

The first 50 modes were extracted using the Block Lanczos method.
Frequency versus mode number is plotted in Figure 19.5.



566  Vibration Simulation Using MATLAB and ANSYS

frequency versus mode number

10 T T T 7 - r T T
10*}
N
-
=
Q
[~
@
3
g
10°}
102 i 1 L 1 1 1 I i i
[} 5 10 15 20 25 30 35 40 45 50
mode number
Figure 19.5: Frequencies versus mode number.
1 T‘ T
1.06-03
1.0E~Q4 7 |
: | A
; l
K /
> \-../
2
e |
€ 1.0E-06
S
uy
uy
1.0E-08 T T T T T T 7 T T T
1.0E+02 1.0E+04
1.0E+03 1.0E+05
frequency, hz
Piezo Actuator/Suspension Model, zeta = S5.E-03

Figure 19.6: Coil input frequency responses for head 0 and head 1 from ANSYS, zeta =
0.005.

Figure 19.6 is the frequency response from ANSYS for coil input for both
heads. The same frequency response from the 50-mode MATLAB model is
shown in Figure 19.7. Figure 19.8 plots the frequency response for the two
piezo inputs.



Chapter 19  MIMO Two-Stage Actuator Model 567

gap displacement, all 50 modes included

T
o'l ]
1&\} |

'

E

- 10 E

@

°

2

g

8,7

=10 |
10°L

—=— head 0, coil input
o[ L— head 1, coil input
10 oo ‘3 ‘4
10 10
Frequency, hz

Figure 19.7: Coil input frequency response from MATLAB, zeta = 0.005.

gap displacement, all 50 modes included

10* L ' .
107} 1
.
£ i
E 10’6 L g ~
) 1 <
g ¢
=10 ¢ 3
10°F ’
—e— head 0 piezo input
oL head 1 piezo input
10 T t
10° 10
Frequency, hz

Figure 19.8: Piezo input frequency response from MATLAB, zeta = 0.005.

19.4.2 Mode Shape Plots

~

Selected mode shape plots are shown below, with a brief discussion of each in
the following section.



568 Vibration Simulation Using MATLAB and ANSYS

1 ANSYS 5.5.3
MAR 3 2000
22:23:59

PLOT NO. 1

DISPLACEMENT
STEP=1

DMX =33.313

DSCA=.133551

CENTROID HIDDEN

Piezo Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 19.9: Mode 1 undeformed/deformed plot, 0.014 hz, rigid body rotation.

1 ANSYS 5.5.3
MAR 3 2000
22:24:14

PLOT NO. 2
DISPLACEMENT

CENTROID HIDDEN

Piezo Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 19.10: Mode 2, 798 hz, actuator pitching mode.



Chapter 19 MIMO Two-Stage Actuator Model :

569

1 ANSYS 5.5.3
MAR 3 2000
22:24:13
PLOT NO. 3
DISPLACEMENT
STEP=1

SUB =3
FREQ=1004
RSYS=1

DMX =52.344

DSCA=.084995
XV
Vv
zv =1

DIST=45.105
XF =10.275

YF =-.410E-03
ZF =5.647
R-Z5=-60

CENTROID HIDDEN

Piezc Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 19.11: Mode 3, 1004 hz, arm/coil bending in phase.

1 ANSYS 5.5.3
MAR 3 2000
22:24:28

PLOT NO. 4
DISPLACEMENT

CENTROID HIDDEN

Piezo Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 19.12: Mode 4, 1055 hz, arms bending out of phase.



570 Vibration Simulation Using MATLAB and ANSYS

Piezo Actuator/Suspension Model, Lanczos Eigenvalue Extraction

ANSYS 5.5.3
MAR 3 2000
22:24:37
PLOT NO. 5
DISPLACEMENT
STEP=1

SUB =5
FREQ=2027
RSYS=1

DMX =39.12

DSCA=.113726

v =1
DIST=45.133

RA-Z5=-60
CENTROID HIDDEN

Figure 19.13: Mode 5, 2027 hz, actuator/coil torsion about x axis.

ANSYS 5.5.3
MAR 3 2000
22:24:46
PLOT NO. 6
DISPLACEMENT
STEP=1

SUB =6

CENTROID HIDDEN

Piezo Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 19.14: Mode 6, 2085 hz, suspension bending mode, some arm interaction.



Chapter 19 MIMO Two-Stage Actuator Model

1 ANSYS 5.5.3
MAR 3 2000
22:25:03
PLOT NO. 8
DISPLACEMENT
STEP=1

SUE =8
FREQ=2823
RSYS=1

DMX =193.699

Zv =1
DIST=45.094
XF =10.346
YF =.473E-04
ZF =4.339
A-25=-60

CENTRCOID HIDDEN

Piezo Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 19.15: Mode 8, 2823 hz, suspension torsion, in phase, arm tip interaction.

1 ANSYS 5.5.3
MAR 3 2000
22:25:12
PLOT NO. 9
DISPLACEMENT
STEP=1

SUB

DMX =207.787

DSCA=.021411

3
CENTROID HIDDEN

Piezo Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 19.16: Mode 9, 2867 hz, suspension torsion, out of phase.



572  Vibration Simulation Using MATLAB and ANSYS

1 ANSYS 5.5.3
MAR 3 2000
221:25:39
PLOT NO. 12
DISPLACEMENT

DMX =157.189

DSCA=.028303

CENTROID HIDDEN

Piezo Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 19.17: Mode 12, 3415 hz, suspension torsion, arm tip lateral.

1 ANSYS 5.5.3
MAR 3 2000
22:25:51

PLOT NO. 13
DISPLACEMENT

DMX =137.162

DSCA=.032436

CENTROID HIDDEN

Piezo Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 19.18: Mode 13, 3479 hz, coil/arm/suspension lateral mode.



Chapter 19 MIMO Two-Stage Actuator Model - '--

Piezo Actuator/Suspension Model, Lanczos Eigenvalue Extraction

ANSYS 5.5.3
MAR 3 2000
22:26:13
PLOT NO. 16
DISPLACEMENT
STEP=1

SUB =16
FREQ=5387

RSY
DMX =88.751

DSCA=.050128

A-2S=-60
CENTROID HIDDEN

Figure 19.19: Mode 16, 5387 hz, suspension sway, arm tip lateral.

Piezo Actuator/Suspension Model, lLanczos Eigenvalue Extraction

ANSYS 5.5.3
MAR 3 2000
22:26:18
PLOT NO. 17
DISPLACEMENT
STEP=1

SUB =17
FREQ=5664
RSYS=1

DMX =56.696

DSCA=.078471

CENTROID HIDDEN

Figure 19.20: Mode 17, 5664 hz, piezo bending, arm tip torsion, coil bending.



574  Vibration Simulation Using MATLAB and ANSYS

1 ANSYS 5.5.3
MAR 3 2000
22:26:38
PLOT NO. 21
DISPLACEMENT
STEP=1

SUB =21
FREQ=6822
RSYS=1

DMX =86.67

DSCA=.051332

DIST=45.372

XF =10.498

YF =.011307

ZF =4.243
A-Z5=-60
CENTROID HIDDEN

Piezo Actuator/suspension Model, Lanczos Eigenvalue Extraction

Figure 19.21: Mode 21, 6822 hz, suspension/arm lateral out of phase.
19.4.3 Mode Shape Discussion

As in Chapter 17, we will now describe the major modes which couple into the
frequency response as well as several that do not couple, associating them with
the frequency responses in Figures 19.7 and 19.8.

Mode 1 is the rigid body rotation mode, which ANSYS again does not
calculate at zero hz because of slight geometric and numerical roundoff issues.
The frequency for the rigid body mode is set to zero in the MATLAB code.

Modes 2, 3 and 4 are all modes which involve motion only in the x-z plane,
bending type motions. Since the motions are perpendicular, gr orthogonal, to
the direction of input forces and output displacements, they do not couple into
any of the frequency responses.

Mode 5 is an actuator/coil torsion mode, rotating about the x axis. A similar
mode can be seen on the model in Chapter 17 as a small pole/zero pair on
head 1. A torsional mode like this can be excited by: (1) coil forces, since
the coil is offset from both the mass center and bearing stiffness center, and
(2) inertial forces, because of the asymmetry of the structure about the mass
center location in the z direction. Because the arms are more symmetric on
this model than the model in Chapter 17, the pole/zero mode does not appear
on the frequency response plot of either head. We will see in the dc gain
ranking that mode 5 is two orders of magnitude less important than the major



Chapter 19 MIMO Two-Stage Actuator Model , 575

modes of the system for coil input, and is almost three orders of magnitude
less important for piezo input.

Mode 6 is a suspension bending mode, once again a bending-only mode with
no coupling into the circumferential direction.

Mode 8 is a suspension torsion, arm-tip interaction mode. It is the second
most important mode for piezo input, but is unimportant for coil input.

Mode 9 is a suspension torsion mode. It is the second most important mode
for coil input, but is unimportant for piezo input. The peak on the two
frequency responses, just below 3 khz, is in fact two different frequencies and
two different modes for the two different forcing functions. For the coil input
the peak is at 2867 hz, mode 9. For piezo input, the peak is at 2823 hz, mode
8.

Modes 12 and 13 are the most important modes for piezo and coil inputs,
respectively. Mode 12 involves arm tip lateral motion which the piezo can
easily excite. Mode 13 is the “system” lateral mode with all components
moving laterally, in phase.

Mode 16, another mode involving the tips of the arms and this time the
suspension sway mode, is the third most important mode for coil input.

Mode 17 is the fifth most important piezo excitation mode, involving piezo
bending, arm tip torsion and coil bending.

Mode 21 is the third most important mode for piezo excitation, with the
suspensions and arms moving laterally, out of phase.

19.4.4 ANSYS Output Listing

The ANSYS output listing for input and output nodes for modes 1, 2 and 13
are listed below. These three modes were selected for discussion in order to
highlight different aspects of the eigenvectors. Compared with the ANSYS
output listing in Chapter 17, there are significantly more nodes in the output,
with the additional nodes representing the six nodes at each end of the bottom
and top piezo elements.

The rigid body mode, mode 1, should have only UY displacements
(circumferential motion in the cylindrical coordinate system). Mode 2, an
actuator pitching mode has its most significant motion in the UZ direction,
with some slight coupling into the UX and UY directions. Mode 13 is a
highly coupled mode, with significant displacements in all three directions for



576  Vibration Simulation Using MATLAB and ANSYS

some nodes. The UY direction displacements are significant with respect to
the UY displacements of mode 2.

**+4% POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1
FREQ= 0.14502E-01 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM 1

NODE UX Uy uz ROTX ROTY ROTZ

22 0.30584E-06 32.618 0.11285E-11 0.0000  0.0000  0.0000
10022 0.30627E-06 32.618 -0.46777E-10 0.0000  0.0000  0.0000
21538 0.85322E-07 9.7742  0.21745E-08 0.0000  0.0000  0.0000
21546 0.82634E-07 14.735 0.36557E-08 0.0000  0.0000  0.0000
21576 0.10309E-06 9.9634 0.21924E-08 0.0000  0.0000  0.0000
21584 0.16887E-06 14.883 0.37407E-08 0.0000  0.0000  0.0000
21617 0.10951E-06 10.147  0.22079E-08 0.0000  0.0000  0.0000
21625 0.11092E-06 14.978 0.37980E-08 0.0000  0.0000  0.0000
22538 0.85184E-07 9.7742  0.21706E-08 0.0000  0.0000  0.0000
22546 0.82327E-07 14.735 0.36546E-08 0.0000  0.0000  0.0000
22576 0.10295E-06 9.9634  0.21900E-08 0.0000  0.0000  0.0000
22584 0.16856E-06 14.883  0.37381E-08 0.0000  0.0000  0.0000
22617 0.10937E-06 10.147  0.22067E-08 0.0000  0.0000  0.0000
22625 0.11061E-06 14.978 0.37940E-08 0.0000  0.0000  0.0000
24061 0.11911E-06 16.888 -0.95894E-09 0.0000  0.0000  0.0000
24066 0.77030E-07 10.226 -0.53758E-09 0.0000  0.0000  0.0000
24082 0.68150E-07 10.226 -0.48785E-09 0.0000  0.0000  0.0000
24087 0.10037E-06 16.888 -0.86954E-09 0.0000  0.0000  0.0000
24538 0.84850E-07 9.7742  0.20872E-08 0.0000  0.0000  0.0000
24546 0.81937E-07 14.735 0.18321E-08 0.0000  0.0000  0.0000
24576 0.10262E-06 9.9634  0.20998E-08 0.0000  0.0000  0.0000
24584 0.16817E-06 14.883  0.17648E-08 0.0000  0.0000  0.0000
24617 0.10904E-06 10.147 0.21122E-08 0.0000  0.0000  0.0000
24625 0.11021E-06 14.978 0.17139E-08 0.0000  0.0000  0.0000
25538 0.84745E-07 9.7742  0.20835E-08 0.0000  0.0000  0.0000
25546 0.82082E-07 14.735 0.18310E-08 0.0000  0.0000  0.0000
25576 0.10251E-06 9.9634  0.20975E-08 0.0000  0.0000  0.0000
25584 0.16832E-06 14.883  0.17623E-08 0.0000  0.0000  0.0000
25617 0.10894E-06 10.147 0.21110E-08 0.0000 0.0000  0.0000
25625 0.11036E-06 14.978 0.17100E-08 0.0000  0.0000  0.0000

MAXIMUM ABSOLUTE VALUES
NODE 10022 22 21625 0 0 0
VALUE 0.30627E-06 32.618 0.37980E-08 0.0000  0.0000  0.0000
*ENDDO INDEX=1

*+r% POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 2
FREQ= 797.85 LOAD CASE= 0




Chapter 19 MIMO Two-Stage Actuator Model - = 577

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM 1

NODE UX [9) 4 vz ROTX ROTY ROTZ

22 049229 -0.14022 -0.10321E-03 0.0000  0.0000  0.0000
10022 -0.89140 0.14245 -0.83465E-03 0.0000  0.0000  0.0000
21538 -1.0283 0.18631 -4.0091 0.0000  0.0000  0.0000
21546 -1.5471 0.23464E-01 -10.200 0.0000  0.0000  0.0000
21576 -1.0204 0.23663 -4.0561 0.0000  0.0000 0.0000
21584 -1.5459 0.72962E-01 -10.473 0.0000  0.0000  0.0000
21617 -1.0084 0.27685 -4.0950 0.0000  0.0000  0.0000
21625 -1.5436 0.11594 -10.631 0.0000  0.0000  0.0000
22538 -0.61275  0.10972 -4.0090 0.0000  0.0000 0.0000
22546 -0.12481  0.83127E-01 -10.200 0.0000  0.0000  0.0000
22576 -0.60478  0.13415 -4.0560 0.0000  0.0000  0.0000
22584 -0.12184  0.86554E-01 -10.473 0.0000  0.0000  0.0000
22617 -0.60100  0.15502 -4.0950 0.0000  0.0000 0.0000
22625 -0.11925  0.89513E-01 -10.631 0.0000  0.0000  0.0000
24061 -0.35220 0.13939 19.652 0.0000  0.0000  0.0000
24066 -0.33572  0.17431 7.3143 0.0000  0.0000  0.0000
24082 -0.33512 -0.17241 7.3089 0.0000  0.0000  0.0000
24087 -0.35171  -0.13563 19.644 0.0000  ©0.0000 0.0000
24538 0.22023  -0.36868E-01 -4.0205 0.0000  0.0000  0.0000
24546 -0.27795 -0.52244E-01 -10.250 0.0000  0.0000  0.0000
24576 0.21597 -0.43317E-01 -4.0680 0.0000  0.0000  0.0000
24584 -0.27997 -0.42854E-01 -10.524 0.0000  0.0000 0.0000
24617 021591 -0.49478E-01 -4.1074 0.0000  0.0000  0.0000
24625 -0.28139 -0.34705E-01 -10.683 0.0000  0.0000  0.0000
25538 0.63806 -0.11349 -4.0206 0.0000  0.0000  0.0000
25546  1.1532 0.79337E-02 -10.250 0.0000  0.0000 0.0000
25576  0.63387 -0.14598 -4.0680 0.0000  0.0000  0.0000
25584 1.1531 -0.29036E-01 -10.524 0.0000  0.0000 0.0000
25617 0.62557 -0.17161 -4.1074 0.0000  0.0000  0.0000
25625 1.1519  -0.61159E-01 -10.683 0.0000  0.0000  0.0000

MAXIMUM ABSOLUTE VALUES
NODE 21546 21617 24061 0 0 0
VALUE -1.5471 0.27685 19.652 0.0000 0.0000 0.0000

*+4++ POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= | SUBSTEP= 13
FREQ= 3479.3 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM 1

NODE UX Uy (874 ROTX ROTY ROTZ
22 -2.1984 60.376  -0.14239E-02 0.0000  0.0000  0.0000
10022 -1.9960 77.045  0.31840E-01 0.0000  0.0000  0.0000
21538  0.80764E-01 0.40397E-01 0.49848  0.0000 0.0000 0.0000
21546 -6.4836 3.9912 -1.2673 0.0000  0.0000  0.0000
21576  0.72358E-01  0.63009E-01 0.42663  0.0000  0.0000  0.0000
21584 -7.6689 4.6553 -1.8884 0.0000  0.0000  0.0000

21617 0.12273 0.57379E-01  0.37047 0.0000  0.0000  0.0000




578  Vibration Simulation Using MATLAB and ANSYS

21625 -8.7016 51772 24325  0.0000  0.0000 0.0000
22538 0.87706E-01  0.17543 0.56748  0.0000  0.0000  0.0000
22546  -6.2831 5.0182 -1.2225  0.0000  0.0000  0.0000
22576 0.92974E01  0.18824 0.48659  0.0000  0.0000  0.0000
22584  -7.4322 5.6835 -1.8299  0.0000  0.6000  0.0000
22617 0.14368 0.17617 042076  0.0000  0.0000  0.0000
22625 -8.4357 6.2048 23541 0.0000  0.0000  0.0000
24061 -1.9369 -12.670 -0.95604  0.0000  0.0000  0.0000
24066  -1.0801 47937 -1.0649  0.0000  0.6000 0.0000
24082  1.5007 -4.5559 -1.4595  0.0000  0.0000  0.0000
24087 23829 -12.467 0.10330  0.0000  0.0000  0.0000
24538 -0.93404E-01  0.37757 1.0509  0.0000  0.0000  0.0000
24546 -5.5118 4.1576 26594  0.0000  0.0000  0.0000
24576 -0.66009E-01  0.38853 1.0874  0.0000  0.0000  0.0000
24584  -6.3981 4.6967 30133 0.0000  0.0000  0.0000
24617 -0.78948E-02  0.37908 1.0812  0.0000  0.0000  0.0000
24625 -7.1715 5.1206 33430 0.0000  0.0000  0.0000
25538 -0.30931 0.47682 1.1451  0.0000  0.0000  0.0000
25546 -5.2283 3.4392 2.6949  0.0000  0.0000  0.0000
25576  -0.28463 0.50756 1.1349  0.0000  0.0000  0.0000
25584  -6.1405 3.9607 3.0595  0.0000  0.0000  0.0000
25617 -0.21671 0.51131 11213 0.0000  0.0000  0.0000
25625 -6.9354 43710 3.4049  0.0000  0.0000  0.0000

MAXIMUM ABSOLUTE VALUES .
NODE 21625 10022 25625 0 0 0
VALUE -8.7016 77.045 3.4049 0.0000 0.0000 0.0000

The eigenvalues and eigenvectors are stripped out of the ANSYS actrlpz.eig
file and are stored in the MATLAB .mat file actrlpz_eig.mat.

19.5 MATLAB Model, MATLAB Code act8pz.m Listing and Results
19.5.1 Input, dof Definition

The act8pz.m MATLAB code starts by defining the degrees of freedom,
nodes, directions and locations for the problem for reference in building the
model. The degrees of freedom are extracted from the ANSYS
eigenvalue/eigenvector listing and are ordered by node number, first the UX
direction and then the UY direction. Once again, the UX direction
information is required to transform the coil and piezo forces into cylindrical
coordinates. The eigenvalue/cigenvector information is then loaded by
reading the .mat file actrlpz_eig.mat and the rigid body mode is set to zero
frequency.

% act8pz.m

clear all;




Chapter 19 MIMO Two-Stage Actuator Model

579

%
%
%

%

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
Y
%
%
%
%
%
%
%
%
%
%
Y%
%
%

dof

O 90~ N A =

hold off;,
clf;

load the Block Lanczos .mat file actr]_eig.mat, containing evr — the
modal matrix, freqvec -the frequency vector and node_numbers - the
vector of node numbers for the modal matrix

the output for the ANSYS run is the following dof's
node  dir where

22 ux - radial, top head gap

10022 ux - radial, bottom head gap
21538  ux - radial, bottom arm piezo, hub end
21546  ux - radial, bottom arm piezo, head end
21576  ux - radial, bottom arm piezo, hub end
21584  ux - radial, bottom arm piezo, head end
21617  ux - radial, bottom arm piezo, hub end
21625  ux - radial, bottom arm piezo, head end
22538  ux - radial, bottom arm piezo, hub end sy
22546  ux - radial, bottom arm piezo, head end
22576  ux - radial, bottom arm piezo, hub end
22584  ux - radial, bottom arm piezo, head end
22617  ux - radial, bottom arm piezo, hub end
22625  ux -radial, bottom arm piezo, head end
24061  ux - radial, bottom arm piezo, coil
24066  ux - radial, bottom arm piezo, coil
24082  ux - radial, bottom arm piezo, coil
24087  ux - radial, bottom arm piezo, coil
24538  ux - radial, top arm piezo, hub end
24546  ux - radial, top arm piezo, head end
24576  ux - radial, top arm piezo, hub end
24584  ux - radial, top arm piezo, head end
24617  ux - radial, top arm piezo, hub end
24625  ux - radial, top arm piezo, head end
25538  ux - radial, top arm piezo, hub end
25546  ux - radial, top arm piezo, head end
25576  ux - radial, top arm piezo, hub end
25584  ux - radial, top arm piezo, head end
25617  ux - radial, top arm piezo, hub end
25625  ux - radial, top arm piezo, head end

22 uy - circumferential, top head gap
10022 uy - circumferential, bottom head gap
21538  uy - circumferential, bottom arm piezo, hub end
21546  uy - circumferential, bottom arm piezo, head end
21576  uy - circumferential, bottom arm piezo, hub end
21584  uy - circumferential, bottom arm piezo, head end
21617  uy - circumferential, bottom arm piezo, hub end
21625  uy - circumferential, bottom arm piezo, head end
22538  uy - circumferential, bottom arm piezo, hub end
22546  uy - circumferential, bottom arm piezo, head end
22576  uy - circumferential, bottom arm piezo, hub end
22584  uy - circumferential, bottom arm piezo, head end
22617 uy - circumferential, bottom arm piezo, hub end




580 Vibration Simulation Using MATLAB and ANSYS

% 44 22625 uy - circumferential, bottom arm piezo, head end
% 45 24061  uy - circumferential, bottom arm piezo, coil
% 46 24066 uy - circumferential, bottom arm piezo, coil
% 47 24082  uy - circumferential, bottom arm piezo, coil
% 48 24087 uy - circumferential, bottom arm piezo, coil
% 49 24538  uy - circumferential, top arm piezo, hub end
% 50 24546  uy - circumferential, top arm piezo, head end
% 51 24576  uy - circumferential, top arm piezo, hub end
% 52 24584  uy - circumferential, top arm piezo, head end
% 53 24617  uy - circumferential, top arm piezo, hub end
% 54 24625  uy - circumferential, top arm piezo, head end
% 55 25538 uy - circumferential, top arm piezo, hub end
% 56 25546  uy - circumferential, top arm piezo, head end
% 57 25576  uy - circumferential, top arm piezo, hub end
% 58 25584  uy - circumferential, top arm piezo, head end
% 59 25617  uy - circumferential, top arm piezo, hub end
% 60 25625  uy - circumferential, top arm piezo, head end

load actripz_eig;
[numdof,num_modes_total] = size(evr);
freqvec(l) = 0; % set rigid body mode to zero frequency

Xn = evr,

19.5.2 Forcing Function Definition, dc Gain Calculations

The unity coil force is equally divided between the four coil nodes. For this
model, the piezo force, “fpz,” is arbitrarily set at 0.2, to be applied with equal
magnitudes and with opposite signs to the two ends of each piezo element.
For an actual system, the piezo force would be related to the coil force by the
appropriate force constants for the VCM and the appropriate voltage/force
relationships for the piezo, and would not be arbitrarily chosen.

Given the directions of the coil and piezo forces in Figure 19.4, the forces are
transformed to cylindrical coordinates and two forcing function vectors are
formed, one for the coil and one for the piezo.

The user is prompted for whether uniform or non-uniform damping is to be
used and then dc or peak gains are calculated, respectively.

For a SISO system, we can rank the relative importance of modes using two
methods, by using dc or peak gains and by using balancing. For a MIMO
system, balancing is the only practical option. However, we will still calculate
the dc gains for this MIMO system to get a feel for the relative importance of




Chapter 19 MIMO Two-Stage Actuator Model e o 581

each of the modes for both forcing functions. This will require calculating dc
gains for the four combinations possible for the two-input, two-output system.

The four dc gains are calculated, sorted and plotted in the code below.

% define radial and circumferential forces applied at four coil force nodes
% "x" is radial, "y" is circumferential, total force is unity
feoil = 0.25;

n24061fx = fcoil*sin(9.1148*pi/180);
n24061fy = feoil*cos(9.1148*pi/180);

n24066fx = feoil*sin(15.1657*pi/180);
n24066fy = fcoil*cos(15.1657*pi/180);

n24082fx = -fcoil*sin(15.1657*pi/180);
n24082fy = feoil*cos(15.1657*pi/180);

n24087fx = -foil*sin(9. | 148*pi/180);
124087y = feoil*cos(9.1148*pi/180);

% define radial and circumferential forces applied at ends of piezo element
% "x" is radial, "y" is circumferential, total force is unity

fpz = 0.2/6; % six nodes at each end of the piezo
% bottom arm radial force

n21538fx = fpz*cos(20.4549*pi/180);
n21546fx = -fpz*cos(13.5298*pi/180);
n21576fx = fpz*cos(20.4549*pi/180);
n21584fx = -fpz*cos(13.5298*pi/180);
n21617fx = fpz*cos(20.4549*pi/180);
n21625fx = -fpz*cos(13.5298*pi/180);
n22538fx = fpz*cos(20.4549*pi/180);
n22546fx = -fpz*cos(13.5298*pi/180);
n22576fx = fpz*cos(20.4549*pi/180);
n22584fx = -fpz*cos(13.5298*pi/180);
n22617fx = fpz*cos(20.4549*pi/180);
n22625fx = -fpz*cos(13.5298*pi/180);

% top arm radial force

n24538fx = -fpz*cos(20.4549*pi/180);
n24546fx = fpz*cos(13.5298*pi/180);
n24576fx = -fpz*cos(20.4549*pi/180);
n24584fx = fpz*cos(13.5298*pi/180);
n24617fx = -fpz*cos(20.4549*pi/180);
n24625fx = fpz*cos(13.5298*pi/180);
n25538fx = -fpz*cos(20.4549*pi/180);
n25546fx = fpz*cos(13.5298*pi/180);
n25576fx = -fpz*cos(20.4549*pi/180);




582  Vibration Simulation Using MATLAB and ANSYS

%

%

%

%
%

%

%

n25584fx = fpz*cos(13.5298*pi/180);
n25617fx = -fpz*c0s(20.4549*pi/180);
n25625fx = fpz*cos(13.5298*pi/ 1 80);

bottom arm circumferential force

n21538fy = -fpz*sin(20.4549*pi/180);
n21546fy = fpz*sin(13.5298*pi/180);
n21576fy = -fpz*sin(20.4549*pi/180);
n21584fy = fpz*sin(13.5298*p1/180);
n21617fy = -fpz*sin(20.4549*pi/180);
n21625fy = fpz*sin(13.5298*pi/180);
n22538fy = -fpz*sin(20.4549*pi/180);
n22546fy = fpz*sin(13.5298*pi/180);
n22576fy = -fpz*sin(20.4549*pi/180);
n22584fy = fpz*sin(13.5298*pi/180);
n22617fy = -fpz*sin(20.4549*pi/180);
n22625fy = fpz*sin(13.5298*pi/180);

top arm circumferential force

n24538fy = fpz*sin(20.4549*pi/180);
124546y = -fpz*sin(13.5298*pi/180);
n24576fy = fpz*sin(20.4549*pi/180);
n24584fy = -fpz*sin(13.5298*pi/180);
n24617fy = fpz*sin(20.4549*pi/180);
024625ty = -fpz*sin(13.5298*pi/180);
n25538fy = fpz*sin(20.4549*pi/180);
n25546fy = -fpz*sin(13.5298*pi/180);
n25576fy = fpz*sin(20.4549*pi/180);
n25584fy = -fpz*sin(13.5298*pi/180);
n25617fy = fpz*sin(20.4549*pi/180);
n25625fy = -fpz*sin(13.5298*pi/180);

two-input system

first input is coil force
second input is excitation of both piezo clements with opposite polarity

f coil is the vector of forces applied to coil

f coil = [zeros(14,1)
n24061 fx
n24066fx
n24082fx
n24087fx
zeros(26,1)
n24061fy
n24066fy
n24082fy
n24087fy
zeros(12,1)];

f piezo is vector of forces applied to piezo ends




Chapter 19 MIMO Two-Stage Actuator Model - 583

f piezo={ 0
0
n21538fx % bottom arm radial force
n21546fx
n21576fx
n21584fx
n21617fx
n21625fx
n22538fx
n22546fx
n22576fx
n22584fx
n22617fx
n22625fx
0
0
0
0
n24538fx % top arm radial force
n24546fx
n24576fx
n24584fx
. n24617fx
) n24625fx
n25538fx
n25546fx
n25576fx
n25584fx
n25617fx
n25625fx
0
0
n21538fy % bottom arm circumferential force
1215468y
n21576fy
n21584fy
n21617fy
n21625fy
n22538fy
n22546fy
n22576fy
n22584fy
n22617fy
n22625fy
0
0
0
0
n24538fy % top arm circumferential force
n24546fy
n24576fy
n24584fy
n24617fy
n24625fy
n25538fy




584 Vibration Simulation Using MATLAB and ANSYS

n25546fy
n25576fy

n25584fy
n25617fy
n25625fy J;

% define composite forcing function, force applied to each node times
% eigenvector value for that node

force_coil = f_coil'*xn;
force_piezo = f piezo'*xn;
% prompt for uniform or variable zeta

zeta_type = input('enter "1" to read in damping vector (zetain.m) ...
or "enter" for uniform damping ... ');

if (isempty(zeta_type))
zeta_type = 0;

zeta_uniform = input(’enter value for uniform damping; ...
.005 is 0.5% of critical (default) ... *);

if (isempty(zeta_uniform))
zeta uniform = 0.005;
end
zeta_unsort = zeta_uniform*ones(num_modes_total,1);
else
zetain; % read in zeta_unsort damping vector from zetain.m file
end

if length(zeta_unsort) ~= num_modes_total

error(['error - zetain vector has ',num2str(length(zeta_unsort)), ...
' entries instead of ",num2str(num_modes_total)]);

end
% define dc gains, 31 is head 1, 32 is head 0

omega?2 = (2*pi*freqvec).”2; % convert to radians and square
% define frequency range for frequency response

freqlo = 501;

freghi = 25000;

flo=log10(freqlo) ;




Chapter 19 MIMO Two-Stage Actuator Model - 585

%

%
%

thi=log10(freghi) ;

f=logspace(flo,thi,300) ;
frad=f*2*pi ;

calculate dc gains if uniform damping, peak gains if non-uniform
if zeta type == % dc gain
gain_h0_coil = abs([force_coil(1)*xn(32,1)/frad(1) ...

force_coil(2:num_modes_total).*xn(32,2:num_modes_total) ...
Jomega2(2:num_modes_total)]);

gain_hl_coil = abs([force coil(1)*xn(31,1)/frad(1) ...
force_coil(2:num_modes_total). *xn(31,2:num_modes_total) ...
Jomega2(2:num_modes_total)]);

gain_h0_piezo = abs([force_piezo(1)*xn(31,1)/frad(1) ...

force piezo(2:num_modes_total).*xn(32,2:num_modes_total) ...
JJomega2(2:num_modes_total)]);

gain_hl_piezo = abs([force_piezo(1)*xn(31,1)/frad(1) ...
force piezo(2:num_modes_total).*xn(31,2:num_modes_total) ...
JomegaZ(2:num_modes_total)]);

elseif zeta type == % peak gain
gain_h0_coil = abs([force_coil(1)*xn(32,1)/frad(1) ...
force_coil(2:num_modes_total).*xn(32,2:num_modes_total) ...
J((2*zeta_unsort(2:num_modes_total))'.*omega2(2:num_modes_total))]);
gain_h1_coil = abs([force_coil(1)*xn(31,1)/frad(1) ...
force_coil(2:num_modes_total).*xn(31,2:num_modes_total) ...
J((2*zeta_unsort(2:num_modes_total))'. *omega2(2:num_modes_total))]);
gain_h0_piezo = abs([force_piezo(1)*xn(31,1)/frad(1) ...
force_piczo(2:num_modes_total).*xn(32,2:num_modes_total) ...
/((2*zeta_unsort(2:num_modes_total))'. *omega2(2:num_modes_total))]);
gain_hl_piezo = abs([force_piezo(1)*xn(31,1)/frad(1) ...
force_piezo(2:num_modes_total).*xn(31,2:num_modes_total) ...
/((2*zeta_unsort(2:num_modes_total))'.*omega2(2:num_modes_total))]);

end

sort gains, keeping track of original and new indices so can rearrange
eigenvalues and eigenvectors

[gain_h0_coil_sort,index_h0_coil_sort] = sort(gain_h0_coil);
[gain_h1_coil_sort,index_h1_coil_sort] = sort(gain_h1_coil);
[gain_hO_piezo_sort,index_h0_piezo_sort] = sort(gain_h0_piezo);

[gain_hl_piezo_sort,index_hl piezo_sort] = sort(gain_hl_piezo);




586 Vibration Simulation Using MATLAB and ANSYS

%

gain_hO_coil_sort = flipir(gain_h0_coil_sort); % max to min
gain_hl_coil_sort = fliplr(gain_h1_coil_sort); % max to min
gain_hO_piezo_sort = flipir(gain_h0_piezo_sort); % max to min
gain_hl_piezo_sort = fliplr(gain_h1_piezo_sort); % max to min
index_hO_coil_sort = fliplr(index_h0_coil_sort) % max to min indices
index_h1_coil_sort = fliplr(index_h1_coil_sort) % max to min indices
index_hO_piez sort = fliplr(index_hO_piezo_sort) % max to min indices
index_h1_piez_sort = fliplr(index_h1_piezo_sort) % max to min indices

index_orig = 1:num_modes_total;
[index_hO_coil_sort' index_h1_coil_sort' index_h0 piez sort' index_h1_piez sort']
plot results

semilogy(index_orig(2:num_modes_total),freqvec(2:num_modes_total),'’k-);
title(['frequency versus mode number'])

xlabel('mode number")

ylabel('frequency, hz')

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause

semilogy(index_orig,gain_h0_coil,’k.-',index_orig,gain_h1_coil,'’k-")
title(['coil input: dec value of each mode contribution versus mode number'])
xlabel('mode number')

ylabel('dc value')

legend('h0 coil input','h1 coil input’)

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause

semilogy(index_orig,gain_h0 piezo,'k.-,index_orig,gain_h1_piezo,'k-")
title(['piezo input: dc value of each mode contribution versus mode number'])
xlabel(‘'mode number')

ylabel('dc value') :

legend('h0 piezo input','h1 piezo input’)

grid off

disp(‘execution paused to display figure, "enter” to continue');%pause

loglog(freqvec(2:num_modes_total),gain_hO_coil(2:num_modes_total),'’k.-', ...
freqvec(2:num_modes_total),gain_hl_coil(2:num_modes_total),’k-")

title(["coil input: dc value of each mode contribution versus frequency'])

xlabel('frequency, hz")

ylabel('dc value’)

axis([500 25000 -inf inf])

legend('hO coil input’,'h1 coil input’)

grid off

disp(‘execution paused to display figure, "enter" to continue'); %opause




Chapter 19 MIMO Two-Stage Actuator Model 587

loglog(freqvec(2:num_modes_total),gain_h0_piezo(2:num_modes_total),'’k.-, ...
freqvec(2:num_modes_total),gain_h1_ piezo(2:num_modes_total),’k-"}

title(['piezo input: dc value of each mode contribution versus frequency'])

xlabel(‘frequency, hz')

ylabel('dc value')

axis([500 25000 -inf inf])

legend('hO piezo input','h1 piezo input')

grid off

disp(‘execution paused to display figure, "enter” to continue');%pause

semilogy(index_orig,gain_h0_coil_sort,'k.-',index_orig,gain_hl_coil_sort,’k-"
title({'coil input: sorted dc value of each mode versus number of modes included'])
xlabel('modes included')

ylabel('sorted dc value')

legend('hO coil input','hl coil input’)

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause

semilogy(index_orig,gain_h0_piezo_sort,'’k.-',index_orig,gain_h1_piezo_sort,’k-")
title(['piezo input: sorted dc value of each mode versus number of modes included'])
xlabel('modes included")

ylabel('sorted dc value')

legend('hQ piezo input','h1 piezo input')

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause

semilogy(index_orig,gain_hO_coil_sort,’k.-,index_orig,gain_hl_coil_sort,'k.-', ...
index_orig,gain_h0_piezo_sort, ...
'k-',index_orig,gain_h1_piezo_sort,’k-")
title(['coil and piezo input: sorted dc value of each mode versus number ...
of modes included'])
xlabel('modes included')
ylabel('sorted dc value')
legend('hO coil input','h1 coil input','h0 piezo input','h1 piezo input’)
grid off
disp('execution paused to display figure, "enter” to continue');%pause

Figure 19.22 repeats Figure 19.5, plotting resonant frequency versus mode
number. Note that there are several “jumps” in the curve, the most significant
between mode 4 and mode 5. As indicated in Section 17.6, “jumps” in the
frequency plot can indicate the system transitioning from one type of
characteristic motion to another. In this case modes 2, 3 and 4 involve
bending motions of the system, while mode 5 involves coil torsion.




588  Vibration Simulation Using MATLAB and ANSYS

frequency versus mode number
10 T T T T T T T

frequency, hz

1 02 1 L L 1 1 1 1 1 I
0 5 10 15 20 25 30 35 40 45 50

mode number

Figure 19.22: Resonant frequencies versus mode number.

The dc gains for head 0 and head 1 for coil input are shown in Figure 19.23.
Because the actuator is nearly symmetrical in design the gains of the two
heads are quite similar.

coil input: dc vaiue of each mode contribution versus mode number
10 T T T T T T T T T

== 10 coil input
2 T —=—h1 coil input

10- | 1 1 1 I
0 5 10 15 20 25 30 35 40 45 50

mode number

Figure 19.23: dc gain versus mode for both heads for coil input.



Chapter 19 MIMO Two-Stage Actuator Model

589

piezo input; dc value of each mode contribution versus mode number

10° ; \ ‘ - v — -
K —=— h0 piezo input
| —— h1 piezo input
10° |
S
T 0™ i
(&)
bl
102l
10'14 1 L I i t I 1 1 1

0 5 10 15 20 25 30
mode number

Figure 19.24: dc gain versus mode number for both heads for piezo input.

The gains for both heads for piezo inputs are shown in Figure 19.24.

coil input: dc value of each mode contribution versus frequency

10° £ w :
10° L
(]
2
g 10
o 10
o
10»12_ B
>
‘ L
10° 10

frequency, hz

Figure 19.25: dc gain versus frequency for both heads for coil input.



590  Vibration Simulation Using MATLAB and ANSYS

piezo input: dc value of each mode contribution versus frequency

e hO piezo input
107 L — h1 piezo input ||

]
/
10° | . 1
-9
o 107 F /\ i
2
> N i
8 1oL / 1
10"} : 1
10-127 i
‘ :
3

frequency, hz

Figure 19.26: dc gain versus frequency for both heads for piezo input.

, coftinput: sorted dc value of each mode versus number of modes included
10 T T 1 T T

. i —»— hO coil input
5| —— h1 coil input

10 \ g

sorted dc value

. , 1 1
0 5 10 15 20 25 30 35 40 45 50
modes included

1 L 1

-
°|

Figure 19.27: Sorted dc gain for both heads for coil input.

The sorted dc gains of the two heads, Figure 19.27, are very similar because
the actuator design is so symmetrical.



Chapter 19 MIMO Two-Stage Actuator Model 591

¢ Piezoinput: sorted dc value of each mode versus number of modes included
0 - .

= hO piezo input |
—— h1 piezo input

sorted dc value
-
o
T

1 0- I L 1 1 I3 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

modes inciuded

Figure 19.28: Sorted dc gain for both heads for piezo input.

goil and piezo input: sorted dc value of each mode versus number of modes included
107 — — - :

-7 T T T T
L —+— hO coil input

—e— h1 coil input
—— hO piezo input
—— h1 piezo input

sorted dc value

0 5 10 15 20 25 30 35 40 45 50
modes included

Figure 19.29: Sorted dc gain for both heads for both coil and piezo inputs.

The sorted gains of head 0 and head 1 for both coil and piezo inputs can be
seen in Figure 19.29. They are of similar magnitude because the piezo force
“fpz” in Section 19.5.2 was chosen to be 0.2.

With the partial listing of mode ranking for both heads and both inputs shown
in Table 19.1, we can start looking at the difficulties of using dc and peak
gains for ranking MIMO systems.



592  Vibration Simulation Using MATLAB and ANSYS

Table 19.1 lists the mode ranking for the first 15 modes for:
Column 1: head 0, coil input
Column 2: head 1, coil input
Column 3: head 0, piezo input

Column 4: head 1, piezo input

1 1 12 12
13 13 8 8

16 16 30 30

28 28 13 13
25 25 49 22
29 36 46 49
36 15 22 46
15 29 28 17
11 17 17 28

17 26 10 50

10 22 50 29

Table 19.1: Ranking for first 15 modes for head 0 and head 1 for coil and piezo inputs.

The first two columns in Table 19.1 show that for coil input, head 0 and head
1 have the same ranking through the first seven modes, then their rankings
change. The second two columns show that for piezo input, head 0 and head 1
have the same ranking through the first six modes, then their rankings change.

If one were to choose a single ranking for the model which would take into
account both inputs and both outputs, it is difficult to see how to do it given
the rankings in the table. Thus the necessity of balanced reduction for MIMO
models. (See Problem P19.1 for using dc gain to rank for reduction.)

19.5.3 Building State Space Matrices

In this section of code the system matrices are assembled and the four
frequency responses are plotted. For all previous SISO models in the book we
have built the system matrices using dc gain ordering of modes. Here, for the
MIMO model, we will assemble the system using the original, unsorted
ordering and will let “balreal” do all the work of sorting in the next section.

% create five state space systems with all modes included, differing in the ordering
% of the modes, the unsorted system will be used for all reductions, letting balreal do all




Chapter 19 MIMO Two-Stage Actuator Model : 593

% the ordering, the sorted systems will be used to show how the dc gain ordering
% compares with the balanced ordering

% 1) unsorted

% 2) sorted, head 0, coil input

% ) 3) sorted, head 1, coil input

% 4) sorted, head 0, piezo input

% 5) sorted, head 1, piezo input

for num_model = 1:5

if num_model = % unsorted
Xnnew = Xn;
freqnew = freqvec;

elseif num_model =2 % sorted, head 0, coil input
xnnew = xn(:,index_hO0_coil_sort);
freqnew = freqvec(index_h0_coil_sort);

elseif num_model == % sorted, head 1, coil input
xnnew = xn(;,index_h1_coil_sort);
freqnew = freqvec(index_h1_coil_sort);

elseif num_model =4 % sorted, head 0, piezo input
xnnew = xn(:,index_h0_piezo_sort);
freqgnew = freqvec(index_hO_piezo_sort);

elseif num_model == % sorted, head 1, piezo input
xnnew = xn(:,index_hl_piezo_sort);

freqnew = freqvec(index_hl_piezo_sort);

end

% define variables for all modes included system matrix, a
w = freqnew*2*pi; % frequencies in rad/sec
w2 =w."2;

zw = 2*zeta_unsort. *w;
% define size of system matrix

asize = 2*num_modes_total;




594  Vibration Simulation Using MATLAB and ANSYS

%

%

%

%
%

%

%

disp(’ ");

disp(" ")

disp(['size of system matrix a is ',num2str(asize)]);
setup system matrix for all modes included model
a = zeros(asize);

for col =2:2:asize

row = col-1;

a(row,col) = 1;

end

for col = 1:2:asize

row = col+1;

a(row,col) = -w2((col+1)/2);

end

for col =2:2:asize

row = col;

a(row,col) = -zw(col/2);

end

setup input matrix b, state space forcing function in principal coordinates
two-input system

first input is coil force
second input is excitation of both piezo elements with opposite polarity

f physical = [f_coil f_piezo];
f_principal is the matrix of forces in principal coordinates
f_principal = xnnew'*f_physical;
b is the matrix of forces in principal coordinates, state space form
b = zeros(2*num_modes_total,2);
for ent=1:num_modes_total

b(2*cnt,:) = f principal(cnt,:);

end




Chapter 19 MIMO Two-Stage Actuator Model . 595

% setup cdisp and cvel, padded xn matrices to give the displacement and velocity
% vectors in physical coordinates cdisp and cvel each have numdof rows

% and alternating columns consisting of columns of xnnew and zeros to give total
% columns equal to the number of states

% all modes included cdisp and cvel

for col = 1:2:2*length(freqnew)

for row = 1:numdof

c_disp(row,col) = xnnew(row,ceil(col/2));
cvel(row,col) = 0;

end

end

for col =2:2:2*length(freqnew)

for row = I:numdof

c_disp(row,col) = 0;

cvel(row,col) = xnnew(row,col/2);

end
end
% define output

d=1[0]; %

if num_model == % unsorted
sys = ss(a,b,c_disp(31:32,2),d);

elseif num_model == % sorted, head 0, coil input
sys_hO_coil = ss(a,b,c_disp(31:32,:),d);

elseif num_model == % sorted, head 1, coil input
sys_hl_coil = ss(a,b,c_disp(31:32,:),d);

elseif num_model == % sorted, head 0, piezo input
sys_hO_piezo = ss(a,b,c_disp(31:32,:),d);

elseif num_model == % sorted, head 1, piezo input

sys_hl_piezo = ss(a,b,c_disp(31:32,:),d);




596  Vibration Simulation Using MATLAB and ANSYS

end

end % end of for loop for creating system matrices

19.5.4 Balancing, Reduction

Balancing the system involves calculating gramians, which are only defined
for negative definite systems. This requires separating the rigid body mode
from the oscillatory modes and balancing the oscillatory modes. The system
matrices are partitioned and a model of only oscillatory modes is created and
balanced. Plotting the diagonal gramian terms (squares of the Hankel singular
values) reveals the relative importance of the states.

Modred is used to reduce the states using both the “del” and “mdc” options.
The complete system is rebuilt by augmenting the rigid body mode (states)
with the reduced oscillatory modes (states). Frequency responses are then
plotted, comparing the two reducing methods with the original 50-mode
model.

% partition system matrices into rigid body mode and oscillatory modes, can't use balreal
% with rigid body mode so will reduce the oscillatory modes and then augment the

% resulting system with the rigid body mode

% define oscillatory system, where output 31 is head 1, output 32 is head 0

[a,b,c_disp,d] = ssdata(sys);
a_syso = a(3:asize,3:asize);
b_syso = b(3:asize,:);
c_syso = ¢_disp(1:2,3:asize);
syso = ss(a_syso,b_syso,c_syso,d);
% define controllability and observability gramians for oscillatory system, syso
wc = gram(syso,'c');
wo = gram(syso,'o");
[row_syso,col_syso] = size(a_syso);
statevec = l:row_syso;
% plot controllability and observability gramians

meshz(wc);
view(60,30);




Chapter 19 MIMO Two-Stage Actuator Model

597

%

%

%

title(['controllability gramian for oscillatory system'])
xlabel('state')

ylabel('state")
grid on

disp(‘execution paused to display figure, "enter" to continue');%pause

meshz(wo);

view(60,30);

title(['observability gramian for oscillatory system'])
xlabel('state')

ylabel('state")

grid on

disp('execution paused to display figure, "enter" to continue');%pause
pull out diagonal elements

wc_diag = diag(wc);

wo_diag = diag(wo);

plot diagonal terms of controllability and observability gramians
semilogy(statevec,wc_diag,’k.-")

title(['controllability gramian diagonal terms'])

xlabel('states")

ylabel('diagonal’)

grid off

disp(‘execution paused to display figure, "enter" to continue'); %pause
semilogy(statevec,wo_diag,'k.-")

title(['observability gramian diagonal terms'])

xlabel('states')

ylabel('diagonal')

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause
position and velocity states plotted separately
semilogy(statevec(l:2:row_syso),wc_diag(1:2:row_syso),'’k.-, ...
statevec(2:2:row_syso),wc_diag(2:2:row_syso),’k-")
title(['controllability gramian diagonal terms'])

xlabel('states')

ylabel('diagonal’)

legend('position states','velocity states',3)

grid off

disp(‘execution paused to display figure, "enter” to continue');%pause

semilogy(statevec(1:2:row_syso),wo_diag(1:2:row_syso),’k.-' ...

N —




598

Vibration Simulation Using MATLAB and ANSYS

%

%
%

%
%

statevec(2:2:row_syso),wo_diag(2:2:row_syso),'’k-")
title(['observability gramian diagonal terms'])
xlabel('states")
ylabel(‘diagonal’)
legend('position states','velocity states',3)
grid off
disp(‘execution paused to display figure, "enter" to continue');%pause
use balreal to rank oscillatory states and modred to reduce for comparison
[sysob,g,T,Ti] = balreal(syso);
[ao_bal,bo_bal,cdispo_bal,do_bal] = ssdata(sysob);
semilogy(g,'k.-")
title('diagonal of balanced gramian versus number of states’)
xlabel('state number")
ylabel('diagonal of balanced gramian')
grid off
osc_states_used = input({'enter number of oscillatory states to use, default 20 ... ");
if isempty(osc_states_used)
osc_states_used = 20;
end

num_modes_used = 1 + osc_states_used/2; % number of modes for overlaid plots

use modred to order oscillatory states from balreal to define reduced order
oscillatory system using both "del" and "mdc"

rsys_delo = modred(sysob,osc_states_used+1:2*num_modes_total-2,'del");
rsys_mdco = modred(sysob,osc_states_used+1:2*num_modes_total-2,'mdc");

rebuild system by appending balanced realization of oscillatory modes to rigid
body mode

[a_delo bal,b_delo bal,c delo bal,d_delo_bal] = ssdata(rsys_delo);

a_del bal=[ a(1:2,1:2) zeros(2,0sc_states used)
zeros(osc_states_used,2) a delo bal ];

b_del bal=[b(1:2,)
b_delo_bal];

c_del_bal =[c_disp(1:2,1:2) c_delo_bal];
rsys_del = ss(a_del_bal,b_del bal,c_del_bal,d);

[a_mdco_bal,b_mdco_bal,c_mdco_bal,d_mdco bal] = ssdata(rsys_mdco);




Chapter 19 MIMO Two-Stage Actuator Model K 599

%

%
%
%

%

a_mdc_bal =[ a(1:2,1:2)  zeros(2,osc_states_used)
zeros(osc_states used,2) a mdco bal J;

b_mdc_bal = [b(1:2,:)
b_mdco bal];

c_mdc;bal =[c_disp(1:2,1:2) c_mdco_bal];
rsys_mdc = ss(a_mdc_bal,b_mdc_bal,c_mdc_bal,d);
frequency response for unsorted system

[mag,phs] = bode(sys,frad);

plot original system response, output of bode command has dimensions
"n "

of "i" x "j" x "k" where "i" is output row, "j" is input column and "k" is the
vector of frequencies

maghOcoil = mag(2,1,:);
maghlcoil = mag(1,1,:);
maghOpz = mag(2,2,:);
maghlpz =mag(l,2,:);

loglog(f,maghOcoil(1,:),’k.-',f,maghlcoil(1,:),'’k-")

title(['gap displacement, all ,mum2str(num_modes_total),' modes included'])
xlabel('Frequency, hz')

ylabel('"Magnitude, mm")

axis([500 25000 1e-9 2e-4])

legend("head 0, coil input','head 1, coil input',3)

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause

loglog(f,maghOpz(1,:),'’k.-",f,magh1pz(1,:),'’k-")

title(['gap displacement, all ,num2str(num_modes_total),' modes included'])
xlabel('Frequency, hz')

ylabel("Magnitude, mm")

axis([500 25000 le-9 2e-4])

legend('head 0 piezo input','head 1 piezo input',3)

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause

loglog(f,maghOcoil(1,:),'’k.-",f,maghlcoil(1,:),'’k.-",f,maghOpz(1,:),’k-",f,magh1pz(1,:),’k-

title(['gap displacement, all ',num2str(num_modes_total),’ modes included'])

xlabel('Frequency, hz')

ylabel('Magnitude, mm")

axis([500 25000 1e-9 2e-4])

legend('head 0, coil input','head 1, coil input','head 0 piezo input','head 1 piezo ...
input',3)

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause

frequency response for balanced reduced modred "del"




600 Vibration Simulation Using MATLAB and ANSYS

[magr_del,phsr_del] = bode(rsys_del frad);

magr_delhOcoil = magr_del(2,1,:);
magr_delhlcoil = magr_del(1,1,:);
magr_delhOpz = magr_del(2,2,:);
magr_delhlpz =magr del(1,2,);

loglog(f,magr _dethOcoil(1,:),'’k-",f,magr_delhlcoil(1,:),’k.-",f,magr_delhOpz(1,:), ...
'k.-f,magr_delhlpz(l,:),'’k-")

title(['gap displacement, modred "del", ',;num2str(osc_states_used), ...
' oscillatory states included'])

xlabel('Frequency, hz')

ylabel("Magnitude, mm')

axis([500 25000 1e-9 2e-4])

legend("head 0, coil input','head 1, coil input','head 0 piezo input' ...
Jhead 1 piezo input',3)

grid off :

disp(‘execution paused to display figure, "enter" to continue');%pause

loglog(f,maghOcoil(1,:),'’k-".f,magr_delhOcoil(1,:),'k.-")

title(['gap displacement, modred "del", ,num2str(osc_states used), ...
' oscillatory states included'])

xlabel('Frequency, hz')

ylabel("Magnitude, mm")

axis([500 25000 1e-9 2e-4])

legend(‘head 0, coil input','"'del" reduced head 0, coil input',3)

grid off

disp('execution paused to display figure, "enter" to continue'); pause

loglog(f,maghlcoil(1,:),'k-",f,magr_delhlcoil(l,:),k.-")

title(['gap displacement, modred "del”, ,num2str(osc_states_used), ...
! oscillatory states included'])

xlabel('Frequency, hz')

ylabel('Magnitude, mm")

axis([500 25000 1e-9 2e-4])

legend('head 1, coil input’,"del" reduced head 1, coil input',3)

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause

loglog(f,maghOpz(1,:),'’k-",f,magr_delhOpz(1,:),'’k.-")

title(['gap displacement, modred "del", ', num2str(osc_states_used), ...
' oscillatory states included'])

xlabel('Frequency, hz')

ylabel("Magnitude, mm')

axis([500 25000 1e-9 2e-4])

legend('head 0, piezo input',"'del" reduced head 0, piezo input',3)

grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

loglog(f,magh1pz(1,:),’k-",f,magr_delhlpz(1,:),'’k.-")

title(['gap displacement, modred "del", ',num2str(osc_states_used), ...
' oscillatory states included'])

xlabel('Frequency, hz')

ylabel("Magnitude, mm')

axis([500 25000 1e-9 2e-4])




Chapter 19 MIMO Two-Stage Actuator Model ~ x:- 601

%

legend('head 1, piezo input',"'del" reduced head 1, piezo input',3)

grid off
disp(‘execution paused to display figure, "enter" to continue');%pause

frequency response for balanced reduced modred "mdc"
[magr_mdc,phsr_mdc] = bode(rsys_mdc,frad);

magr_mdchOcoil = magr_mdc(2,1,:);
magr_mdch]coil = magr mde(1,1,:);
magr mdchOpz = magr mdc(2,2,:);
magr_mdchlpz = magr mde(1,2,:);

loglog(f,magr_mdchOcoil(1,:),’k-',f,magr_mdchlcoil(1,:),k.-, ...
f,magr_mdchOpz(1,:),’kk.-',f,magr_mdchlpz(1,:),’k-")
title(['gap displacement, modred "mdc", ,num2str(osc_states_used), ...
' oscillatory states included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm")
axis([500 25000 1e-9 2e-4])
legend('head 0, coil input','head 1, coil input','head 0 piezo input',’head 1 piezo ...
input',3)
grid off
disp(‘execution paused to display figure, "enter" to continue’);%pause

loglog(f,maghOcoil(1,:),'’k-",f,magr _mdchOcoil(1,:),’k.-")

title(['gap displacement, modred "mdc", ',num2str(osc_states_used), ...
' oscillatory states included'])

xlabel('Frequency, hz')

ylabel('Magnitude, mm’)

axis([500 25000 1e-9 2e-4])

legend('head 0, coil input',"mdc" reduced head 0, coil input',3)

grid off

disp(‘execution paused to display figure, "enter" to continue'); pause

loglog(f,maghlcoil(1,:),'’k-",f,magr_mdchlcoil(1,:),’k.-") .

title(['gap displacement, modred "mdc", ,num2str(osc_states_used), ...
' oscillatory states included'])

xlabel('Frequency, hz')

ylabel('Magnitude, mm")

axis([500 25000 1e-9 2¢-4])

legend('head 1, coil input',""'mdc" reduced head 1, coil input',3)

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause

loglog(f,maghOpz(1,:),’k-",f,;magr_mdchOpz(1,:),’k.-")

title(['gap displacement, modred "mdc", ',num2str(osc_states_used), ...
' oscillatory states included'])

xlabel('Frequency, hz')

ylabel('Magnitude, mm')

axis([500 25000 1¢-9 2e-4])

legend(*head 0, piezo input',"" mdc" reduced head 0, piezo input',3)

grid off

disp(‘execution paused to display figure, "enter" to continue'); pause




602  Vibration Simulation Using MATLAB and ANSYS

loglog(f,maghlpz(1,:),’k-",f,magr mdchlpz(1,:),’k.-")

title(['gap displacement, modred "mdc", \,num2str(osc_states_used), ...
' oscillatory states included'])

xlabel('Frequency, hz')

ylabel("Magnitude, mm')

axis([500 25000 1e-9 2e-4])

legend(‘head 1, piezo input',"mdc" reduced head 1, piezo input',3)

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause -

gap dispiacement, all 50 modes included

Magnitude, mm

—e— head 0, coil input
—— head 1, coil input

10
Frequency, hz

Figure 19.30: Frequency response for coil input for both heads, all modes included.

gap displacement, all 50 modes inciuded

104L

10°}

Magnitude, mm

10+

—e— head 0 piezo input
oL— head 1 piezo input

10 ;
10 10*
Frequency, hz

Figure 19.31: Frequency response for piezo input for both heads, all modes included.



Chapter 19 MIMO Two-Stage Actuator Model ~ -~ 603

gap displacement, all 50 modes included

1
E _5/// ‘
E 10°L
1]
b=}
=
€
g, .7
s 10 |
10} —= head 0, coil input
| —— head 1, coil input
2 —— head 0 piezo input
; — head 1 piezo input
10'9 ———— — 1
10° 10*
Frequency, hz

Figure 19.32: Frequency response for both coil and piezo inputs for both heads, all modes
included.

The frequency response plots for both inputs and both outputs are shown
above for reference.



604  Vibration Simulation Using MATLAB and ANSYS

controllability gramian for oscillatory system

state state

Figure 19.33: Controllability gramian values.

observability gramian for oscillatory system

state state

Figure 19.34: Observability gramian values.

Graphically, Figures 19.33 and 19.34 show the two gramians for this MIMO
system. The gramians are nearly diagonal. The controllability gramian
displays a predominance of lower frequency states, while the observability
gramian has some higher frequency states included.



~— T - !
P S
—— 3
————— .
——— —
= D ———
e ——— [TWU‘.?A ——
= - = . &
—_——» -~
P —— —
—— — ————
— — =
——— —————
e ———
—— — —
D ——— Y
| ——Y

————
i ———
I-ll.\vu..
= i ——— Y
-~
—— 8
L e S ——
P ———
-~

P ——— Y } .
—— -~
Em————-
e ——
— ——
e —— — 'Mlo\ =
C— " B —
e e ———Y
P ————— | —
— J.‘
—— 9 , =
———— —
=——"y —— —
P ——— s =
-—————— — .
= - O
Qﬁ“‘\x\v. ‘.H“{
-t
D ———— — .
[ — e —
- — 8 ——
— , —
— =
—
o
5]

o b ¥ K 3
o (=]
o e

|leuobelp



606  Vibration Simulation Using MATLAB and ANSYS

controllabitity gramian diagonal terms

10°

—e— position states
1l — velocity states
h i

20

0 10 20 30 40 50 60 70 80 90 100

10

Figure 19.37: Ceontrollability gramian diagonal position and velocity state terms.

s observability gramian diagonal tems
10 T

T T T T T T T

"

° L . r i
10 b} Y/\_/\‘,’\ s /'/‘/‘
J \/\/ \”'\ ot

d -

&

/N\ \/_[\/
L . I :
60 70 80 90 1

00

diagonal
N
(=]

VN

— position states |
— velocity states |
10 e I L

0 10 20 30 40 50
states

Figure 19.38: Observability gramian diagonal position and velocity state terms.

Plotting the position and velocity terms for each gramian separately displays
their character on a mode-by-mode basis.



Chapter 19 MIMO Two-Stage Actuator Model e 607

diagonal of balanced gramian versus number of states

101-< T — T T
5

diagona! of balanced gramian
=
)

L’Q*
10.8 3 \1‘ 1
10° - .
Seonr
107 . 1 P 1 . | i e
0 10 20 30 40 50 60 70 80 90 100
state number

Figure 19.39: Balanced gramian diagonal terms (Hankel singular values) versus state
number.

The balanced gramian shows several sharp drops in magnitude, one at 10
states and one at 56 states. We will see in Section 19.5.7 that 10 oscillatory
modes (20 oscillatory states) are required for a normalized reduction index of
less than 5% for coil input, and that 16 oscillatory modes (32 oscillatory
states) are required for a normalized reduction index of less than 5% for piezo
nput.

19.5.5 Frequency Responses for Different Numbers of Retained States

This section displays pairs of frequency responses, one for head 0 for coil
input and one for head O for piezo input. Each pair of plots represents an
increasing number of oscillatory modes included in the reduced model. The
original 50 mode model is overlaid to show the error in the reduced model.
Note how the balanced method adds modes and which modes it chooses.



608  Vibration Simulation Using MATLAB and ANSYS

gap displacement, modred “del”, 6 oscillatory states included
N . J

10 ¢

Magnitude, mm

107 "3
@ 0, coil Input
—e— "del” reduced head 0, coil input .
oo e et eaa 0 col g \ N
10° 10*
Frequency, hz

Figure 19.40: Head 0, coil input, six reduced oscillatory states included.

gap displacement, modred "del”, 6 oscillatory states included

L T T

A
Ou
1

Magnitude, mm
5

=
(=]
T

10°-

P - head 0, piezo inph&
—e— "del" reduced head 0, piezo input
9L i ——— k . a
3

10 10
Frequency, hz

10

Figure 19.41: Head 0, piezo input, six reduced oscillatory states included.

With only six oscillatory states included the coil input captures the first two
resonances but the piezo input misses the first resonance.



Chapter 19 MIMO Two-Stage Actuator Model . 609

gap displacement, modred “del”, 8 oscillatory states inciuded

T T

Magnitude, mm

— head 0, coil input
—— "del" reduced head 0, coil input
9 el
10 ‘ 3 4
10 10
Frequency, hz

Figure 19.42: Head 0, coil input, eight reduced oscillatory states included.

gap displacement, modred “def*, 8 osciltatory states included

Magnitude, mm

10 ¢

— head 0, piezo input
o[l "del" reduced head 0, piezo input

10° 10
Frequency, hz

Figure 19.43: Head 0, piezo input, eight reduced oscillatory states included.

With 8 oscillatory states included the coil input captures the first two
resonances but the piezo input again misses the first resonance.



610 Vibration Simulation Using MATLAB and ANSYS

gap displacement, modred "del", 10 oscitlatory states included

10 ¢ k

Magnitude, mm

— head 0, coil input

s —e— “del" reduced head 0, coll input
10 L

3

10
Frequency, hz

Figure 19.44: Head 0, coil input, 10 reduced oscillatory states included.

gap displacement, modred *del”, 10 oscillatory states included

; e ey ——
10* 5
10°F

£

E 19°

(]

°

2

5

2107k
107"

— head 0, piezo input
oL "del" reduced head 0, piezo input
10 P ‘4
10 10
Frequency, hz

Figure 19.45: Head 0, piezo input, 10 reduced oscillatory states included.

With 10 oscillatory states included the first three coil input modes are fit well
and also the first two piezo input modes.



Chapter 19 MIMO Two-Stage Actuator Model ’ 61

gap disptacement, modred "del", 12 oscillatory states included

Magnitude, mm

— head 0, coil input 1
—s— "del" reduced head Q, coit input
A S S

10 10
Frequency, hz

Figure 19.46: Head 0, coil input, 12 reduced oscillatory states included.

gap displacement, modred "dei", 12 oscillatory states included

1o*g— D ]

Magnitude, mm

e —— :
~— head 0, piezo input
—e— "del" reduced head 0, piezo input

Frequency. hz
Figure 19.47: Head 0, piezo input, 12 reduced oscillatory states included.

With 12 oscillatory states included the first three major modes are fitted for
both coil and piezo inputs.



612  Vibration Simulation Using MATLAB and ANSYS

gap dlsplacemem modred "del", 14 oscﬂlatory states included

£
E, 10° 4
o
©
2 {
‘c
8, 7
=10 E
LN
. 1
10 3
— head 0, coil input
—e— "del" reduced head 0, coil input
9
10 ' “
10° 10
Frequency, hz

Figure 19.48: Head 0, coil input, 14 reduced oscillatory states included.

gap displacement, modred "del", 14 oscillatory states included

—_—— —_
10 4
10°F

E 6

E 10°,

& 4

°

=2

€

g .7

=10 |
10

—— head 0, piezo input
oL "del" reduced head 0, piezo input
L — .
10 10

Frequency, hz
Figure 19.49: Head 0, piezo input, 14 reduced oscillatory states included.

For 14 oscillatory states included now the first four major piezo modes ate
fitted while the coil input starts missing some modes in the 10khz range.



Chapter 19  MIMO Two-Stage Actuator Model 613

gap displacement, modred "del", 16 oscillatory states included

10} 1
10° E E
E -6
E 10 4
.‘é)
-7
=10 k
10°; 4
—— head 0, coil input
oL "del" reduced head 8, coil input
10— 3 R
10 10*

Frequency, hz
Figure 19.50: Head 0, coil input, 16 reduced oscillatory states included.

gap displacement, modred "del", 16 oscillatory states included

10‘E 9

£
E
g
o
2
5
S0’

10°

— head 0, piezo input
oL “del" reduced head 0, piezo input
10" R T

10°
Frequency, hz

Figure 19.51: Head 0, piezo input, 16 reduced oscillatory states included.

For 16 oscillatory states included the only visible effect of the extra two states
is in the piezo input zero in the 8khz range.



314 Vibration Simulation Using MATLAB and ANSYS

gap displacement, modred "del”, 18 oscillatory states included

107} & i
‘ L2
10°F ) i
i
: {
E 10°} f
()]
3 f
2 j
@ 7 y
= 10 L :
10°
— head 0, coil input
—e— "del” reduced head 0, coil input
10° = s
10° 10*
Frequency, hz

Figure 19.52: Head 0, coil input, 18 reduced oscillatory states included.

gap displacement, modred "dei”, 18 oscillatory states included

Magnitude, mm
=
o

E head 0, piezo input ]

oL "del" reduced head 0, piezo ip&

10 L 1

10° 10
Frequency, hz

Figure 19.53: Head 0, piezo input, 18 reduced oscillatory states included.

For 18 oscillatory states included the coil input response picks up an
additional mode in the 10khz range.

19.5.6 “del” and “mdc” Frequency Response Comparison

This section compares the “del” and “mdc” reduced models for the case of 20
included oscillatory states.



Chapter 19 MIMO Two-Stage Actuator Model : 615

gap displacement, modred "del”, 20 oscillatory states included
JE

10 i
S~

10° %

10‘7' U

— head 0, coil input ]
oL+~ "del" reduced head 0, coil input | 1
i
10° 10*
Frequency, hz

Magnitude, mm

Figure 19.54: Head 0, coil input, 20 reduced oscillatory states included, modred “del.”

gap displacement, modred "mdc", 20 oscillatory states included
- . e

! : t
£ |
E 10 ﬁ 1
] 1 : i
3 f IR v
8, .7 ;
= 10 - Y AA
F o~
10° ¢
“ - head 0, coil input
g‘jﬂ < "mdc” reduced head 0, coit |nputJ
10 A
103 10*
Frequency, hz

Figure 19.55: Head 0, coil input, 20 reduced oscillatory states included, modred “mde.”

There is virtually no difference between the “del” and “mdc” reductions in the
two figures above for coil input.



616 Vibration Simulation Using MATLAB and ANSYS

gap displacement, modred "del", 20 oscitlatory states included
, .

0% ]

10°L 4
£ 5
E 10°L
) 1 v
o
2
g :
=10 T

10°L

— head 0, piezo input
o] L= "del” reduced head 0, piezo input
10 : -
10° 10*
Frequency, hz

Figure 19.56: Head 0, piezo input, 20 reduced oscillatory states included, modred “del.”

gap displacement, modred "mdc®, 20 oscillatory states included

107 | .
.
.

E,ms‘ L

§ ] t

=10 |

10°

— head 0, piezo input
—— "mdc" reduced head 0, piezo input |
. raC

10° 10
Frequency, hz

Figure 19.57: Head 0, piezo input, 20 reduced oscillatory states included, modred “mdec.”

Similarly, there is no difference between the “del” and “mdc™ reductions for
piezo input.

19.5.7 Impulse Response
Oscillatory system impulse responses due to both coil and piezo forcing

functions are calculated. Previously calculated results for normalized
reduction index (18.28) versus number of modes included are shown.



Chapter 19 MIMO Two-Stage Actuator Model e 617

%

%

calculate impulse responses

ttotal = 0.0025;

t = linspace(0,ttotal,400)';

[disp_syso,t_syso] = impulse(syso,t);

[disp_rsys_delo,t_rsys_delo] = impulse(rsys_delo,t);

[disp_rsys_mdco,t_rsys_mdco] = impulse(rsys_mdco,t);

disphOcoil = disp_syso(:,2,1);

disphlcoil = disp_syso(:,1,1);

disphOpz = disp_syso(:,2,2);

disphlpz =disp_syso(:,1,2);

dispr_delhOcoil = disp_rsys_delo(:,2,1);

dispr_delhlcoil = disp_rsys_delo(:,1,1);

dispr_delhOpz = disp_rsys_delo(:,2,2);

dispr_delhlpz = disp_rsys_delo(:,1,2);

dispr_mdchOcoil = disp_rsys_mdco(:,2,1);

dispr_mdchlcoil = disp_rsys_mdco(:,1,1);

dispr_mdchOpz =disp_rsys _mdco(:,2,2);

dispr_mdchlpz =disp_rsys_mdco(;,1,2);

build matrix of results

dispo = [disphOcoil disph1coil disphOpz disphlpz ...
dispr_delhOcoil dispr_delh1coil dispr_delhOpz dispr_delhlpz ...
dispr_mdchOcoil dispr_mdch1coil dispr_mdchOpz dispr_mdch1pz];

hOcoil_del del = dispo(:,1) - dispo(:,5);

hlcoil_del del = dispo(:,2) - dispo(:,6);

hOpiezo_del_del = dispo(:,3) - dispo(:,7);

hlpiezo_del del = dispo(:,4) - dispo(:,8);

hOcoil_mdc_del = dispo(:,1) - dispo(:,9);

hlcoil_mdc_del = dispo(:,2) - dispo(:,10);

hOpiezo_mdc_del = dispo(:,3) - dispo(:,11);

hlpiezo_mdc_del = dispo(:,4) - dispo(:,12);

index_hOcoil del= ...
sqrt(sum(hOcoil_del_del.*hOcoil_del del))/sqrt(sum(dispo(:,1).*dispo(:,1)));

index_hlcoil_del=...
sqrt(sum(hlcoil_del_del.*hlcoil del_del))/sqrt(sum(dispo(:,2).*dispo(:,2)));




618

Vibration Simulation Using MATLAB and ANSYS

index_hOpiezo del= ...
sqrt(sum(hOpiezo_del_del.*hOpiezo_del_del))/sqrt(sum(dispo(:,3).*dispo(:,3)));

index_hlpiezo del=...
sqrt(sum(hlpiezo del del.*hlpiezo del del))/sqrt(sum(dispo(:,4).*dispo(:,4)));

index_hOcoil mdc= ...
sgrt(sum(hOcoil_mdc_del.*hOcoil mdc_del))/sqrt(sum(dispo(:,1).*dispo(:,1)));

index_hlcoil mdec=...
sqrt(sum(hlcoil_mdc_del.*hlcoil _mdc_del))/sqrt(sum(dispo(:,2).*dispo(:,2)));

index_hOpiezo mdc= ...
sqrt(sum(hOpiezo_mdc_del.*hOpiezo_mdc_del))/sqrt(sum(dispo(:,3).*dispo(:,3)));

index_hlpiezo mdc= ...
sqrt(sum(hlpiezo_mdc_del *hlpiezo_mdc_del))/sqrt(sum(dispo(:,4).*dispo(:,4)));

[index_hOcoil_del index_hlcoil_del index_hOpiezo_del index_hlpiezo del ...
index_hOcoil_mdc index_hlcoil mdc index_hOpiezo_mdec index_h1piezo_mdc]

plot(t_syso,disphOcoil,’k.-',t_rsys_delo,dispr_delhOcoil, ...
'k-',t_rsys_mdco,dispr_mdchOcoil,'k--")

title(["head 0, displacement vs time, coil impulse input, ', ...
num?2str(osc_states used),' oscillatory states included'])

xlabel('time, sec')

ylabel('displacement, mm")

legend('all modes','modred del','modred mdc',4)

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause

plot(t_syso,disphlcoil’k.-',t_rsys_delo,dispr_delhlcoil, ...
'k-',t_rsys_mdco,dispr_mdch]coil,’k--")

title(['head 1, displacement vs time, coil impulse input, ', ...
num2str(osc_states_used),’ oscillatory states included'])

xlabel('time, sec')

ylabel('displacement, mm')

legend('all modes','modred del','modred mdc',4)

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause

plot(t_syso,disphOpz,'’k.-',t_rsys delo,dispr delhOpz, ...
'k-',t_rsys_mdco,dispr_mdchOpz,'k--"

title(['head 0, displacement vs time, piezo impulse input, ', ...
num2str(osc_states_used),’ oscillatory states included'])

xlabel('time, sec')

ylabel('displacement, mm")

legend(‘all modes','modred del','modred mdc',4)

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause




Chapter 19 MIMO Two-Stage Actuator Model

619

%

plot(t_syso,disphlpz'k.-\t rsys delo,dispr_delhlpz, ...

k-',t rsys_mdco,dispr_mdchlpz,k--")

title([*head 1, displacement vs time, piezo impulse input, ', ...

num2str(osc_states_used),' oscillatory states included'])

xlabel('time, sec')
ylabel('displacement, mm")
legend('all modes','modred del','modred mdc',4)

grid off

disp(‘execution paused to display figure, "enter” to continue'); %pause

error = [

states hOcd hled hOpd hlpd hOGcm hlem hOpm hlpm

10 0.1081 0.1075 0.4162 0.3963 0.1081 0.1075 0.4165 0.3964
12 0.1079 0.1072 0.3154 0.3058 0.1079 0.1073 0.3157 0.3061
16 0.1075 0.1070 0.1393 0.1421 0.1074 0.1070 0.1393 0.1419
20 0.0395 0.0425 0.1391 0.1410 0.0397 0.0425 0.1391 0.1411
24 0.0363 0.0374 0.0839 0.0873 0.0463 0.0473 0.0841 0.0875
28 0.0161 0.0178 0.0469 0.0495 0.0160 0.0191 0.0791 0.0794

32 0.0140 0.0142 0.0145 0.0160 0.0142 0.0143 0.0146 0.0163];

nmode = error(:,1)/2;

error_hOcoil_del = error(:,2);

error_hlcoil_del = error(:,3);

error_hOpiezo_del = error(:,4);

error_hlpiezo_del = error(:,5);

error_hOcoil_mdc = error(:;,6);

error_hlcoil_mdc = error(:,7);

error_hOpiezo_mdc = error(:,8);

error_hlpiezo_mdc = error(:,9);

plot(nmode,error_hOcoil_del,'k.-',nmode,error_hOcoil_mdc,'k-")
title(head 0, coil input normalized reduction index")
xlabel('number of modes included")

ylabel('normalized reduction index")

legend('modred del','modred mdc")

axis([0 20 0 0.5])

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause




620  Vibration Simulation Using MATLAB and ANSYS

plot(nmode,error_hlcoil_del k.- ,nmode,error_hlcoil mdc,'k-")
title('head 1, coil input normalized reduction index")
xlabel('number of modes included")

ylabel('normalized reduction index")

legend('modred del','modred mdc")

axis([0 20 0 0.5])

grid off

¥

disp(‘execution paused to display figure, "enter" to continue');%pause
plot(nmode,error_hOpiezo_del, k.-, nmode,error hOpiezo_mdc,’k-")
title('head 0, piezo input normalized reduction index")

xlabel('number of modes included')

ylabel('normalized reduction index')

legend('modred del’'modred mdc")

axis([0 20 0 0.5])

grid off

disp(‘execution paused to display figure, "enter" to continue');%pause

plot(nmode,error_hlpiezo_del,’k.-,nmode,error_hlpiezo mdc,'k-")
title('head 1, piezo input niormalized reduction index')
xlabel(‘'number of modes included")

ylabel('normalized reduction index')

legend('modred del','modred mdc')

axis([0 20 0 0.5])

grid off

disp('execution paused to display figure, "enter” to continue');%pause

The pages following will show impulse responses for head 0 for both coil and
piezo inputs and for both “del” and “mdc” reduced models. Following the
impulse responses, the normalized reduction index versus number of reduced
modes is plotted. It shows very little difference between the two reduction
methods.




Chapter 19 MIMO Two-Stage Actuator Model 621

head 0, displacement vs time, coil impulse input, 20 oscillatory states included

0.06 : ‘
0.04 - 4
£ 0.02+ | 4
£ ot
£ .
2 Oe . . P»
§ t :
o
4 .
a
] +
T -0.02}
Rt —e— all modes i
—— modred def
—— modred mde
-0.06 ¢ ! . B egb bt
0 0.5 1 15 2 25
time, sec , 10.3

Figure 19.58: Impulse response comparison for head 0 for coil input for oscillatory system,
full model (all oscillatory modes) and balreal modred “del” and “mdc” reduced systems
with 20 oscillatory modes.

head 0, displacement vs time, piezo impulse input, 20 oscillatory states included
0.025 T T T e !

0.02- . 4

oots| ' : ‘E ]

0.01}

0
3 0005} : i
0.01) .

-0.015- 4

~e allmodes |
-0.02 - —— modred del
—— modred mdo

-0.025 ! L ! -
o 0.5 1 15 2 25

time, sec x 10°

=3
8
o
S

lacement, mm

disp

Figure 19.59: Impulse response comparison for head 0 for piezo input for oscillatory
system, full model (all oscillatory modes) and balreal modred “del” and “mdc” reduced
systems with 20 oscillatory modes.



622  Vibration Simulation Using MATLAB and ANSYS

head 0, coil input normalized reduction index
0.5 T T T T T T T

e modred del
0.45- —— modred mdc |-

o o
W b
5 »
T T
I

o
w
1

normalized reduction index
o o
o © N
[, N (3.1
T
1 L !

o
i
T
|

o
=3
a
T
1

. i . ! ! L
6 8 10 12 14 16 18 20
number of modes included

o
o
[y
>

Figure 19.60: Head 0 impulse response normalized error index comparison for reduced
modred models using “del” and “mdc” methods, ceil input.

head 0, piezo input normalized reduction index

0.5 T T T T T T T T T

—e— modred del
0.45 —— modred mde |4
04 q

©
)

=3 =}
o ° o
o & = o
or—F—F————r

normalized reduction index
(=]
N
o
b

2 4 6 8 10 12 14 16 18 20
number of modes included

Figure 19.61: Head 0 impulse response normalized error index comparison for reduced
modred models using “del” and “mdc” methods, piezo input.



Chapter 19 MIMO Two-Stage Actuator Model 623

19.6 MIMO Summary

We started the chapter with a description of key mode shapes for the two-stage
actuator/suspension system. ANSYS eigenvector listings for several modes
allowed comparing the numeric values in the eigenvector to the visual
interpretation from the mode shape plot. Small displacements in the deformed
mode shape plot correlate to small numerical values in the eigenvector. If the
small numerical values in the eigenvector occur in the input and/or output
degrees of freedom, the mode will have a “small” dc gain and is relatively
unimportant.

In the next section we calculated and plotted the dc gains for all four
input/output combinations. In Table 19.1 we listed the modes for the
input/output combinations, sorted by dc gain. We found that head 0 and head
1 de gain sorted modes for coil input are the same for the first seven modes.
For piezo input, both heads have the same mode ranking for the first six
modes. This similarity in the most important modes for both heads for the coil
and piezo inputs is brought about by the physical symmetry of the
actuator/suspension system, and in general will not be the case.

As in the previous chapter, we used balancing to define the system for
reduction and used the “modred” “del” and “mdc” options to reduce.
Frequency responses for different number of states were plotted and compared
for both coil and piezo inputs, overlaying the non-reduced transfer function.

Visually comparing the reduced and non-reduced frequency response
magnitudes, we found that including 20 oscillatory states (plus the states from
the one rigid body mode) gave a “good” fit through the 10khz range.

The MATLAB model was then used to calculate the impulse responses for the
oscillatory reduced and non-reduced systems, where we found that 10
oscillatory modes (20 oscillatory states) were required to have a normalized
error index of less than 5% for coil inputs. For piezo inputs, 16 oscillatory
modes (32 oscillatory states) were required for less than 5% normalized error
index. There was little difference in normalized error index between the “del”
and “mdc” reduction options.



624  Vibration Simulation Using MATLAB and ANSYS

Problems

P19.1 Modify the MATLAB code act8pz.m to reduce the piezo force “fpz”
(Section 19.5.2) from the 0.2 value used in the text to 0.02 and 0.002. In both
cases, examine the frequency and impulse responses for different number of
oscillatory states used. Does the balanced reduction method technique
continue to choose roughly equal number of modes for both coil and piezo
inputs even when there are large differences in dc gain values between the two
inputs?

P19.2 For the piezo force “fpz” of 0.2, choose the first five oscillatory modes
from the coil input and the first five oscillatory modes from the piezo input
(Table 19.1). Assemble the state equations from the rigid body mode and the
10 oscillatory modes and solve for the frequency and impulse responses.
Compare the responses to the 20 oscillatory state balanced reduction.
Comment on the similarities/differences.



APPENDIX 1

MATLAB AND ANSYS PROGRAMS

This appendix lists all the MATLAB and ANSYS codes used in each chapter,
along with a short description of the purpose of each.

MATLAB codes have the suffix “.m” and the ANSYS codes have the suffix
“inp.” Additional output files from previous runs are stored as “.grp” or other
suffixes and will be used from time to time.

Coding format: All the MATLAB code available from downloading and
shown in the book starts over one tab, allowing comment lines to stand out.
The code also includes a lot of blank lines for readability (my apologies to
tight “c” code programmers).

In most MATLAB code, critical definitions and calculations are only a few
lines of code, while plotting and annotating are the bulk of the space. For this
reason, some code listings in the book do not show all the plotting commands.

ANSYS eigenvalue/eigenvector results are converted to MATLAB input form
using the following MATLAB extraction codes:

ext56ux.m extracts the ANSYS UX degree of freedom

extS6uy.m extracts the ANSYS UY degree of freedom

extS6uz.m extracts the ANSYS UZ degree of freedom

extS6uxuy.m  extracts the ANSYS UX and UY degrees of
freedom

extS6uxuz.m  extracts the ANSYS UX and UZ degrees of
freedom

extS6uyuz.m  extracts the ANSYS UY and UZ degrees of
freedom

extS6uxuyuz.m extracts the ANSYS UX, UY and UZ degrees of

‘ freedom

The codes above all call a supporting MATLAB code extS6chk.m. All the
codes should be installed in the same directory as the ANSYS output code
which is to be extracted or should be installed in a directory which is in the
MATLAB path. To use the extraction code, just rename the ANSYS
eigenvector output file to have a “.eig” extension and open MATLAB in the



626 Vibration Simulation Using MATLAB and ANSYS

1)

same directory. MATLAB will then open a window showing all the “.eig’
files in the directory. Double-click on the file to extract and MATLAB will
output a file with the “ext56xx.mat” name. If several files are to be extracted
in the same directory, rename the “ext56xx.mat” name to a unique name with
the “.mat” extension.

The “.mat” extracted MATLAB file contains the following information:

evr, the modal matrix, with rows consisting of degrees of freedom
and each column representing a mode. The numbering of degrees of
freedom is the same as the ANSYS listing, which is in ascending
order of the selected node numbers. Where multiple directions are
extracted, for instance UX and UY degrees of freedom, the degrees
of freedom are listed in that order, first the UX degrees of freedom
and then the UY degrees of freedom. The extracted modal matrix is
of size: (total dof) x (modes).

freqvec, a vector listing the eigenvalues (resonant frequencies), in hz
values. The size of the frequency vector is (modes) x (1).

node_numbers, a vector listing the node numbers for the extracted
data, of size (dof) x (1).

The extracted data can then be loaded and used to develop state space
models of the system.

Chapter 2: Transfer Function Analysis

sdofxfer.m: Calculates and plots magnitude and phase for a single degree of
freedom system over a range of damping values.

tdofpz3x3.m: Uses the “num/den” form of the transfer function, calculates
and plots all nine pole/zero combinations for the nine different transfer
functions for tdof model. It prompts for values of the two dampers, c1 and c2,
where the default (hitting the “enter” key) values are set to zero to match the
hand calculated values in (2.82). The “transfer function” forms of the transfer
functions are then converted to “zpk - zero/pole/gain” form to enable
graphical construction of frequency response in the next chapter.

tdofpz3x3_rlocus.m: Plots pole and zero values for z11 transfer function for
a range of damping values.

Chapter 3: Frequency Response Analysis

tdofxfer.m: Plots tdof model poles and zeros in complex plane, user choice
of damping values. Uses several different model descriptions and frequency



Appendix 1 MATLAB and ANSYS Programs 627

response calculating techniques. The model is described in polynomial,
transfer function and zpk forms. Magnitude and phase versus frequency are
calculated using a scalar frequency “for loop,” vector frequency, automatic
bode plotting and bode with magnitude and frequency outputs.

Chapter 4: Zeros in SISO Mechanical Systems

ndof_numzeros.m: Calculates and plots poles/zeros and transfer functions
for user selected input/output locations on a “n” dof series spring/mass model.
Shows that poles of “constrained” structures to left and right of input/output
degrees of freedom are the zeros of the unconstrained structure.

cantfem.inp: ANSYS code for resonant frequencies of cantilever and tip
driving point transfer function. Used to identify zero locations to compare
with poles of “constrained” system in cantzero.inp.

cantzero.inp: ANSYS code for resonant frequencies of cantilever with
simple support at tip. Used to identify poles of “constrained” structure.

cantzero.m: Uses eigenvalues and eigenvectors from cantfem.inp and
cantzero.inp to plot overlay of zeros of cantilever with poles of tip supported
cantilever, showing the correspondence. Calls cantzero_freq.m,
cantfem_magphs.m.

Chapter 5: State Space Analysis

tdof non_prop_damped.m: This code is used to develop an understanding
of the results of MATLAB’s eigenvalue analysis and complex modes.

Chapter 6: State Space: Frequency Response, Time Domain

tdofss.m: Calculates and plots the four distinct frequency responses for the
tdof model.

tdof_ss_time_ode45_slnk.m: Solves for time domain response of tdof
problem using MATLAB’s ODE45 solver, a Runga-Kutta method of solving
differential equations, as well as, MATLAB’s Simulink block-diagram
simulation tool.

tdof_ss_time_slnk_plot.m: Plots results from tdof ss_time ode45 slnk.m.

tdofssfun.m: Function code called by tdof ss time ode45 slnk.m, contains
state equations.



628  Vibration Simulation Using MATLAB and ANSYS

tdofss_simulink.mdl: Simulink model called by
tdof_ss_time_ode45_sink.m, defines state equations.

Chapter 8: Frequency Response: Modal Form

tdof _modal_xfer.m: Calculates and plots the four distinct frequency
responses and the individual modal contributions.

threedof.inp: ANSYS code that builds the undamped tdof model, calculates
eigenvalues and eigenvectors, outputs the frequency listing and eigenvectors,
plots the mode shapes. Calculates and plots all three transfer functions for a
force applied to mass 1.

Chapter 9;: Transient Response: Modal Form

tdof modal time.m: Plots displacements versus time in principal and
physical coordinates.

Chapter 10: Modal Analysis: State Space Form

tdofss_eig.m: Solves for the eigenvalues and eigenvectors in the state space
form of the tdof system.

tdof_prop damped.m: Calculates poles and zeros of proportionally damped
tdof system. Plots initial condition responses for modes 2 and 3 in physical
and principal coordinate systems.

1

Chapter 11: Frequency Response: Modal State Space Form

tdofss_modal_xfer_modes.m: Solves for and plots frequency responses for
individual modal contributions and overall responses. Has code for plotting
frequency responses in different forms.

Chapter 12: Time Domain: Modal State Space Form

tdofss_modal_time ode45.m: Plots tdof transient responses for overall and
individual modal contributions. Calls the function files below, which define
the state space system and individual modes.

tdofssmodalfun.m, tdofssmodallfun.m, tdofssmodal2fun.m,
tdofssmodal3fun.m: Function files called by tdofss modal time ode45.m.



Appendix 1 MATLAB and ANSYS Programs 629

Chapter 14: Finite Elements: Dynamics

cant_2el guyan.m: Solves for the eigenvalues and eigenvectors of a two-
element cantilever beam.

cantbeam_guyan.m: Solves for eigenvalues and eigenvectors of a cantilever
with user-defined dimensions, material properties, number of elements and
number of mode shapes to plot. Guyan Reduction is an option. A 10-element
beam is used as an example.

cantbeam.inp: ANSYS code solves for the eigenvalues and eigenvectors of a
10 element cantilever, the same beam as the cantbeam_guyan.m example.

Chapter 15: SISO State Space MATLAB Model from ANSYS Model

cantbeam_ss.inp: ANSYS code for cantilever beam, allows the user to
change the number of elements and the eigenvalue extraction technique. The
two variables “num_elem” and “eigext” can be easily changed to see their
effects.

cantbeam_ss_freq.m: Compares theoretical frequencies for the first 16
modes for a cantilever beam with MATLAB finite element and ANSYS finite
element results.

cantbeam_ss_modred.m: Creates a MATLAB state space model using the
eigenvalue and eigenvector results from previous ANSYS runs. Modes are

ranked for importance and several reduction techniques are used.

Chapter 16: Ground Acceleration MATLAB Model from ANSYS Model

cantbeam_ss_spring_shkr.inp: ANSYS model of shaker mounted cantilever
with tip mass and tip spring to shaker. Outputs mode shape plot file
cantbeaml6red.grp. R
cantbeam_ss_tip_con.inp: ANSYS model of shaker mounted constrained tip
cantilever. Outputs mode shape file tipcon16red.grp.

cantbeam_shkr_modeshape.m: Plots mode shapes from ANSYS modal
analysis results for any of the tip spring models, with 2, 4, 8, 10, 12, 16, 32
and 64 beam elements.

cantbeam_ss_shkr_modred.m: Creates a MATLAB state space model
using the results from ANSYS model cantbeam_ss_spring_shkr.inp. Ranks
modes, then uses several reduction techniques to define smaller model.



630 Vibration Simulation Using MATLAB and ANSYS

Chapter 17: SISO Disk Drive Actuator Model

srun.inp: ANSYS model of suspension.
arun.inp; ANSYS model of actuator/suspension system.
act8.m: MATLAB code for dc and peak gain ranking and reduction of

actuator/suspension model. Output from program is used for some input to
balred.m in Chapter 18.

Chapter 18: Balanced Reduction

balred.m: MATLAB code for balanced reduction of actuator/suspension
model from act8.m.

Chapter 19: MIMO Two-Stage Actuator Model

arunpz.inp: ANSYS model of two-stage actuator/suspension system.

act8pz.m: MATLAB model of two-stage actuator/suspension system,
balanced reduction.

Downloading

All the programs listed can be downloaded from the MathWorks FTP site at
www.mathworks.com or from the author’s site at www.hatchcon.com.



APPENDIX 2

LAPLACE TRANSFORMS

This appendix presents a short introduction to Laplace transforms, the basic
tool used in analyzing continuous systems in the frequency domain. The
Laplace transform converts linear ordinary differential equations (LODE’s)
into algebraic equations, making them easy to solve for their frequency and
time-domain behavior. There are many excellent presentations of the Laplace
transform, as in Oppenheim [1997], for those who would like more
information.

A2.1 Definitions

The Laplace transform is a generalized Fourier transform, where given any
function f{(t), the Fourier transform F(w) is defined as:

F(o) = F{fO}w) = [f(1) e™at (A2.1)

where ® = 2xnf and fis frequency, in hz.

In the same spirit, we can define the Laplace transform as:

F(s) = 2{f()}(s) = If (t) e™dt (A2.2)
where s is complex:
§=0+jm, (A2.3)

6
S

o and ® are real numbers which define the locations of in the complex

plane, see Figure A2.1 below. Also, ® = 2rnf as above.



632  Vibration Simulation Using MATLAB and ANSYS

Im(s)

Figure A2.1: o and o definitions in complex plane.
Remarks:
1) if f(t)=0 for t<0,theﬁ
T{EONw) = £{f()} (jo) (A2.4)

2) The “0” limit in the Laplace transform definition takes care of
f(t)'s which contain the 8 function.

3) The integral in the definition of the Laplace transform need not be
finite, i.e. Z{f}(s) may not exist for all se ] . However, if f(t)

is bounded by some exponential: *
f(t)] < Me™ (A2.5)

then £{f}(s) will make sense for se 0 such that Re{s} > g,.



Appendix 2 Laplace Transform 633
4) The Laplace transform is linear:
2{af +a,f,} =aL{f}+a,7{f,} (A2.6)
A2.2 Exampies, Laplace Transform Table
1) Exponential
f(t) = e™1(t)
F(s) = e]‘e""'l(t)e"s'dt = c]'e‘(s“)‘ dt = i [s>a] (A2.7a,0)
i o s+a
2) | Impulse
£ =8 | |
F(s) = o]é‘)(t)e_“dt =e?=1 [Efor bany s] (A28a)
-
3) Step
f(t) = 1(t)
F) = [edt= - w)] s>0] 20D
-

Table A2.1 below contains Laplace transforms for a few selected functions in
the time domain. The “Region of Convergence” or “ROC” is defined as the
range of values of “s” for which the integral in the definition of the Laplace

transform (A2.2) converges (Oppenheim 1997).



634  Vibration Simulation Using MATLAB and ANSYS

f(t) Laplace Transform Region of Convergence
1) 3(t) 1 all s
) S(t-T) T all s
3y 1) I Re{s} >0
s
4 Lt“‘l(t) o Re{s}>0
1'1'1' Sm+1
. N
5) e™1(0) o Re{s} > Re{a}
6) L_imiga 1(t) ! Re{s} > Re{a}
(m-1)! (s+a)™" y
7) (1—e™)I(t) s(si > Re{s} > max{0,Re{a}}
-at _ _-bt b-a
8) (e™ —a™™)I(t) ——(S 60 Re{s} > max{Re{a},Re{b}}
9) sin(at) I(t) 2 Re{s} >0
s’ +a
10)  cos(at)l(t) i Re{s} >0
s’ +a
at b
11) e ™*sin(bt)1(t) —_(s pRc Re{s}>a
u s+a
12) e cos(bt)i(t) —————(s FRo Re{s}>a

Table A2.1: Laplace transform table.




Appendix 2 Laplace Transform 635

A2.3 Duality

The following duality conditions exist:

d
Y & - FE)

(A2.10a,b)
d
™ f(t) & sF(s)
A2.4 Differentiation and Integration
Differentiation and the Laplace transform: Suppose
£{x}(s) = X(s) | (A2.11) |
then
L{x}(s) = sX(s)~x(07), : (A2.12)
so we can interpret “s” as a differentiation operator:
% s (A2.13)
Integration and the Laplace transform: Suppose
L{x}(s) = X(s), (A2.14)
then
t ;
L { Jx(t)dt} (s) = i X(s), (A2.15)

and we can interpret “1/s” as an integration operator:

SN jdt (A2.16)



636  Vibration Simulation Using MATLAB and ANSYS

A2.5 Applying Laplace Transforms to LODE’s with Zero Initial
Conditions

Assume we have a linear ordinary differential equation as shown in (A2.17):
() +,5(t) +a,7(t) +2,y(t) = bii(t) +bi(t) +byu(t)  (A2.17)

Assume ¥(t)=0, y(t)=0, y(t) =0 and take the Laplace transform of both
sides, using the linearity property (A2.6):

2{¥}(s)+a,L{¥}(s)+a,L{y}(s) +a,L{y}(s) =

. bli{ﬁ}(s)-i_b?{{ﬁ}(s)'l'b3£{u}(s) (A2.18)

6o
S

Recalling that “s” is the differentiation operator, replace “dots” with “s™:

s’Y(s)+a,5°Y(s)+a,8Y(s) +a,Y(s) = b,s’U(s) + b,sU(s) + b,U(s) (A2.19)

)
S

We are now left with a polynomial equation in that can be factored into

terms multiplying Y(s) and U(s):
[s* +a,8” +a,5+a, | Y(s) =[b;s’ +b,s+b, | U(s)  (A2.20)
Solving for Y(s):

[bis?+b,s+b, ]

YO =5
[s +as +azs+a3]

U(s) (A2.21)

It can be shown that the terms in the numerator and denominator above are the
Laplace transform of the impulse response, H(s):
Y(s) = H(s)U(s), (A2.22)
H(s) = i[h()](s) s : (A2.23)

and h() is the impulse response. For the example LODE (A2.17) the
Laplace transform of the impulse response is:

[b,s2 +b2s+b3]

I:s3 +as’ +azs+a3]

H(s) = (A2.24)



Appendix 2  Laplace Transform 637

A2.6 Transfer Function Definition

It can be shown that the transfer function of a system described by a LODE is
the Laplace transform of its impulse response, H(s), (A2.23).

Taking the Laplace transform of the LODE has provided the Laplace
transform of the impulse response. If we could inverse-transform H(s) we
could get the impulse response h(t) without having to integrate the differential
equation. Typically the inverse transform is found by simplifying/expanding
H(s) into terms which can be found in tables, such as Table A2.1, and than
inverting “by inspection.”

A2.7 Frequency Response Definition

Having obtained H(s) directly from the LODE by replacing “dots” by “s,” we
can obtain the frequency response of the system (the Fourier transform of the
impulse response) by substituting “ jo ™ for “s” in H(s).

H(jw) = H(s)| (A2.25)

s=jo
A2.8 Applying Laplace Transforms to LODE’s with Initial Conditions

In A2.5 we looked at applying Laplace transforms to LODE’s with zero initial
conditions, which led to transfer function and frequency response definitions.
Since transfer functions and frequency responses deal with steady state
sinusoidal excitation response of the system, initial conditions are of no
significance, as it is assumed that all measurements of the system undergoing
sinusoidal excitation are taken over a long enough period of time that
transients have died out.

On the other hand, if we are solving for the transient response of a system
defined by a LODE that has initial conditions, obviously the initial conditions
will not be zero. We will use the basic definition of the differentiation
operation from (A2.12) to define the Laplace transform of 1% and 2™ order
differential equations with initial conditions x(0) and x(0) :

1* Order: 2{x(t)} = sX(s) — x(0) (A2.26)

2™ Order: {0} = s*X(s) - sx(0) - x(0) (A2.27)



638  Vibration Simulation Using MATLAB and ANSYS

A2.9 Applying Laplace Transform to State Space

We defined the form of state space equations in Chapter 5 as below:
x(t) = Ax(t)+Bu(t) (A2.28)
y(t) = Cx(t) +Du(t) ’ (A2.29)

where the initial conditions are set by x(0) = x,. The general block diagram
for a SISO state space system is shown in Figure A2.1.

Direct
Transmission
Matrix

Input Matrix Integrator Block Output Matrix

— %0 T I 4 '
u(t) B —+— I I 7C_T_’ : é&:’m

Input — | I
—» scalar
—]p vECtOr

Figure A2.1: State space block diagram.

System Matrix

Taking Laplace transform of (A2.28):

2{x}(s) = Z{Ax} (5) + £ {Bu} (s)
sX(s)—x(07) = AZL{x}(s)+ BL{u}(s) (A2.30a,b)
= AX(s)+BU(s)

Solving for X(s):

sX(s)— AX(s) = x(07)+ BU(s)
(sI-A)X(s) = x(07)+BU(s) (A2.31a,b,0)
X(s) = (sI-A)"'x(07) +(sI - A)"'BU(s)



Appendix 2 Laplace Transform 639

The two terms on the right-hand side of (A2.31c) have special significance:

1) (sI-A)'x(07) is the Laplace transform of the homogeneous
solution, the initial condition response.

2) (sI-A)'BU(s) is the Laplace transform of the particular
solution, the forced response.

Taking the Laplace transform of (A2.29), the output equation:

Y(s) = CX(3)+DU(s) (A2.32)
Knowing X(s) from (A2.31¢) and substituting in (A2.32):

Y(s) = CsI-A)"'x(07)+ [C(sl -A)'B+ D] U(s) (A233)

If the initial conditions are zero, x(07) = 0, then

Y(s) =[C(sI-A)'B+D|U(s), (A2.34)
with the transfer function for the system being defined by H(s):

H(s) =[C(I-A)'B+D] (A2.35)

When the terms in H(s) above are multiplied out, they will result in the
following polynomial form:

H(s) = :—E:—;+ D (A2.36)



REFERENCES

Archer, John S., Consistent Mass Matrix for Distributed Mass Systems,
Journal of the Structural Division, Proceedings of the American Society of
Civil Engineers, ST4, August, 1963, p. 161.

Bay, 1.S., Fundamentals of Linear State Space Systems, McGraw-Hill,
Boston, MA, 1999.

Chang, Tish-Chun and Craig, Roy R., Jr., Normal Modes of Uniform Beams,
Journal of Engineering Mechanics Division, Proceedings of the American
Society of Civil Engineers, Vol. 95, No. EM4, August, 1969, p. 1027.

Chen, C.T., Linear System Theory and Design, Third Edition, Oxford
University Press, New York, 1999.

Craig, R.R., Jr., Structural Dynamics, An Introduction to Computer Methods,
John Wiley & Sons, New York, 1981,

Evans, W.R., Graphical Analysis of Control Systems, Trans. AIEE, vol. 68,
1949, pp. 765-7717.

Franklin, G.F., Powell, J.D., and Emami-Naeini, A., Feedback Control of
Dynamic Systems, Third Edition, Addison-Wesley, Menlo Park, CA, 1994.

Franklin, G.F., Powell, J.D., and Workman, M., Digital Control of Dynamic
Systems, Third Edition, Addison-Wesley, Menlo Park, CA, 1998.

Gawronski, W.K., Balanced Control of Flexible Structures, Springer, New
York, 1996.

Gawronski, W.K., Dynamics and Control of Structures, A Modal Approach,
Springer, New York, 1998.

Johnson, C.D. and Kienholz, D.A., Finite Element Prediction of Damping in
Structures with Constrained Viscoelastic Layers, AIA4 Journal, 20(9),
September 1982, p. 1284.

Kailath, T., Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.



Vibration Simulation Using MATLAB and ANSYS 642

Laub, A.J., Heath, M.T., Paige, C.C., and Ward, R.C., “Computations of
System Balancing Transformations and Other Applications of Simultaneous
Diagonalization Algorithms,” IEEE Transactions on Automatic Control, AC-
32 (1987), pp. 115-122.

Maia, NM.M. and Silva, J.M.M., Theoretical and Experimental Modal
Analysis, Research Studies Press LTD, Taunton, Somerset, U.K., 1997.

Miu, D.K., Poles and Zeros, Mechatronics, Springer-Verlag, New York, 1993.
Moore, B., “Principal Component Analysis in Linear Systems:
Controllability, Observability and Model Reduction,” IEEE Transsactions on
Automatic Control, AC-26 (1981), pp. 17-31.

Newland, D.E., Mechanical Vibration Analysis and Computation, John Wiley
& Sons, Inc., New York, 1989.

Oppenheim, A.V., Willsky, A.S., and Nawab, S.H., Signals and Systems,
Prentice-Hall, Upper Saddle River, NJ, 1997.

Pilkey, Walter D., Formulas for Stress, Strain, and Structural Matrices, John
Wiley & Sons, New York, 1994.

Strang, G., Introduction to Linear Algebra, 2™ Edition, Wellesley-Cambridge
Press, Wellesley, MA, 1998.

Weaver, W. Jr., Timoshenko, S.P., and Young, D.H., Vibration Problems in
Engineering, 5 Edition, John Wiley & Sons, New York, 1990.

Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, Prentice-
Hall, Upper Saddle River, NJ, 1996.

Zhou, K. and Doyle, J.C., Essentials of Robust Control, Prentice-Hall, Upper
Saddle River, NJ, 1998.



INDEX

A

Absolute damping, 193-194
Actuator models, see Disk drive actuator model;
MIMO two-stage actuator model
ANSYS program, see also Finite element
analysis
code summaries
disk drive actuator, 629-630
dynamics, 629
ground acceleration model, 629
MATLAB from state space, 629
MIMO two-stage actuator model, 630
overview, 625-626
zeros of transfer functions, 627
default normalization method, 178
disk drive actuator model
analysis steps, 487
code summaries, 629-630
eigenvalues, frequency responses,
488489
eigenvector listings, 498-499
mode shape discussion, 495-496
mode shape plots, 489495
output example listing, 496498
suspension system description, 479-481
suspension system results, 481-485
system description, 485487
eigenvalue problem in frequency analysis
description, 230
listing, 230-234
results, 234-237
ground acceleration model
constrained-tip, spring-tip
frequencies/mode shapes, 436439
listing, 472-476
summary, 629
Guyan reduction
10-element beam frequency, 367-368
20-element beam mode shape plots,
368-373
MATLAB code from, see State space model,
MATLAB from ANSYS
MIMO two-stage actuator model
code summary, 630
model description, 563-565
piezo results, 565-578

tdof frequency response, modal form
description, 230
listing, 230-234
results, 234-237

zeros in cantilever model
code summary, 627
results, 102—-103
tip supported, 99-102
unsupported, 95-99

Argand diagram

state space analysis, frequency response

described, 124-126
initial condition responses plots,
132-136

state space form, modal analysis, 290-292

B

Balanced reduction
controllability and observability
definitions in state space, 530-532
gramians, 531, 532-535
gramians code, 535-538
gramians values, two-stage actuator
model, 603-607
gramian values plots, 539-541
MATLAB code function, 542-546
ranking using, 541-542
MATLAB code
dc gain ranking, 528-530
summary, 630
MIMO system, see MIMO two-stage
actuator model
overview and description, 527-528,
559-560

ranking frequency comparison, 546551

ranking impulse response comparison,
552-560
Block Lanczos
in cantilever model, 389-391
described, 389
Bode calculation frequency response

ground acceleration model, 451452, 461

output plots, 72-73
state space model, 409410
transfer function form, 65-66



644

Index

transfer function form, with frequency,
67-70
zpk function form, with frequency, 70-72

C

Cantilever beam
dynamics of, see Dynamics analysis using
finite elements, cantilever beam
static analysis, two-element
applied tip force solution, 345-346
constraint degrees of freedom
elimination, 344-345
description, 339-340
element matrix development, 340-342
global matrix building, 342-344
static condensation, 346352
two-element
closed form sotution, 361-363
global matrix building, 356-358
zeros model using ANSYS
code summary, 627
results discussion, 102-103
tip supported, 99-102
unsupported, 95-99
Characteristic equation for transfer functions,
25, 165-168
Complex eigenvalues/vectors
frequency response, state space, 113-115
MATLAB code, state space analysis
components, 118-119
developmental sequence, 115-118
eigenvectors magnitude and phase angle,
121-122
eigenvectors normalization, 119-121
real motion, 122-124
Consistent mass matrix, cantilever beam,
355-356
Controllability and observability, balanced
reduction
definitions in state space, 530-532
gramians, 531, 532-535
gramians code, 535-538
gramians values, two-stage actuator model,
603-607
gramian values plots, 539-541
MATLAB code function, 542-546

ranking using, 541-542
Convolution integral, 150
Counter-rotating eigenvector terms, 123
Critical damping
MATLAB code .
frequency response, modal form,
284-285
percentage, state space analysis,
126-128
real modes, 284-285
output plots
code used, 73
db-linear, 76
db-log, 75
linear-linear, 77
log-log, 74
Nyquist, 79
real and imaginary vs. log-linear, 78-79
real vs. imaginary, 79

D

Damped systems, 1, 2
MATLAB code, critical
frequency response, modal form,
284-285
percentage, state space analysis,
126-128
real modes, 284-285
matrix, 9
normal modes
matrix definition, proportional damping,
194-199
necessary conditions, 190-192
overview, 189-190
types of damping, 192-194
output plots for critical
code used, 73
db-linear, 76
db-log, 75
linear-linear, 77
log-log, 74
Nyquist, 79
real and imaginary vs. log-linear, 78-79
real vs. imaginary, 79
Dc gain definition, 397
Degrees of freedom (dof) definition, 8



Index

645

Diagonalization of stiffness and mass matrices

determination of, 174-177
state space form, modal analysis, 269-273

Disk drive actuator model

actuator description, 478-479
ANSYS actuator/suspension model,
485-487
ANSYS actuator/suspension model results
analysis steps, 487
eigenvalues, frequency responses,
488-489
eigenvector listings, 498499
mode shape discussion, 495496
mode shape plots, 489495
output example listing, 496498
ANSYS code summaries, 629-630
ANSYS suspension model description,
479-481

ANSYS suspension model results, 481-485

damping comparisons, 518-520
matched dc gain results, 523-525
MATLAB code
dc gain, 501-506
description, 499-500
forcing function, 501-506
input, dof definition, 500-501
ranking results, 506-509
results plots code, 515-518
results plots discussion, 518-520
state space matrix building, 509-512
state space system definition, 513-515
summary, 629-630
reduced truncation, 522-523
sample rate/aliasing effects, 520-522
suspension system description, 477-478

Dof, see Degrees of freedom
Duhamel integral, 150
Dynamics analysis using finite elements,

cantilever beam
ANSYS code, 367, 383-386
ANSYS code summaries, 629
consistent mass matrix, 355-356
Guyan reduction
closed form solution, 361-363
derivation, 358-360
described, 358
MATLAB and ANSYS results summary,
367-373
MATLAB code, 366-367, 373-383

lumped mass matrix, 354-355

MATLAB code summaries, 628-629

overview, 353

6dof global mass matrix, 353-354

state space form, second order reduced
equation, 363366

two element, global matrix building,
356-358

Eigenvalues, 29; see also Poles

complex, see Complex eigenvalues/vectors
frequency response analysis, ANSYS
description, 230
listing, 230-234
results, 234-237
modal analysis
characteristic equation and, 165-168
eigenvectors, 168-172
eigenvectors interpretation, 172
equations of motion, 164-165
modal matrix, 172-173
principal mode definition, 165
state space model, MATLAB from ANSYS
bode calculations, 409410
damping values considerations, 402
direct transmission matrix “d” setup,
407-408
frequency range, 409-410
full model response plots, 410-413
input, 395
input matrix “b” setup, 405-406
modal matrix size, 396
mode sort by vibration, 396402
modred, see Modred
output matrix “c” setup, 407-408
ranking approach for mode contribution,
394
reduced models mode contribution plots,
416417
reduced models response plots, 413-415
“ss” setup, 409-410
system definition for reduction, 421-423
system matrix “a” setup, 403405

Eigenvectors

complex, see Complex eigenvalues/vectors



646

Index

normalization techniques
with respect to mass, 178-182
with respect to unity, 177-178

solving using transfer function, 80-84

Equations of motion

modal analysis
mass normalization review, 182-183
summary, 185-186
uncoupling, 173-177

physical coordinate system
modal analysis, 182-183, 185-186
state space form, 273-274
transient response, 243-247
uncoupling, 173-177

principal coordinate system
modal analysis, 183, 185-186
state space form, 274-277
transient response, 241-242
uncoupling, 173-177

state space analysis, 108-109

state space form, modal analysis
back-transforming to physical, 319-322
physical coordinates, 273-274
principal coordinates, 274-277
time domain, 317-319

tdof system
checks for linear systems, 11
components and form, 8-11
rotary actuator model, stiffness and

mass, 12-15

6dof model, stiffness, 11-12
tdof system description, 8

transfer function analysis
checks for linear systems, 11
components and form, 8-11
rotary actuator model, stiffness and

mass, 12-15

6dof model, stiffness, 1112
tdof system description, 8

transient response, modal form
back-transforming to physical, 243-247
principal coordinates, 241-242

Evans root locus technique, 47

F

Finite element analysis, see also ANSYS
program
dynamics, see Dynamics analysis using
finite elements, cantilever beam
state space model, see State space model,
MATLAB from ANSYS
static analysis, two-element cantilever beam
applied tip force solution, 345-346
constraint degrees of freedom
elimination, 344-345
description, 339-340
element matrix development, 340-342
global matrix building, 342-344
static condensation, 346-352
stiffness matrix
global matrix building, 335-339
matrix development, 334-335
overview, 333-334
Frequency domain behavior, see Frequency
response analysis
Frequency response analysis
back-transforming mode, physical
coordinates, 206209
eigenvalue problem using ANSYS
description, 230
listing, 230-234
results, 234-237
forcing function combinations, 211-213
individual mode contributions plots
mode sign determination, 220-223
total response, first zero, 224
total response, high resonant frequency,
224-225
total response determination, 217-219,
223
MATLAB code, modal state space
calculation, 303-305
listing, 226-229
overview, 226
plotting code, 305-309
plotting forms, 311-314
results, critical damping, 309-311
setup, 301-303
summary, 628
MATLAB code, transfer function
bode calculation, 65-66
bode calculation with frequency, 67-70



Index

647

description, 61-62
listing, 226-229
output plots, bode calculation, 72-73
overview, 226
polynomial form, for-loop calculation,
62-64
polynomial form, vector calculation,
64-65
summary, 626-627
zpk function, bode calculation with
frequency, 70-72
overview, 201
partial fraction expansion, 209-211
review of results, 202-204
sdof system
definition and equation, 15
frequency response derivation, 17-21
MATLAB code, 21-22
transfer function derivation, 1517
transfer function
modal combinations for, 213-217
principal coordinates, 204-206

G

Gramians in controllability and observability,
531, 532-535
code, 535-538
plots, 539-541

values in two-stage actuator model, 603-607

Ground acceleration model, MATLAB from
ANSYS
ANSYS code
constrained-tip, spring-tip
frequencies/mode shapes, 436439
listing, 472-476
summary, 629
description, 435-436
MATLAB code summaries, 629
state space model
bode calculations, 451-452, 461
damping values considerations, 446
dof and modes, 441
full model response plots, 452-455
input, 440-441
matrices “b,” “c,” “d” setup, 449451
mode sorting by vibration, 442446

modred, see Modred
reduced model response plots, 456458
reduced models mode contribution plots,
459461
reduction summary, 471472
“ss” setup, 451-452
system matrix “a” setup, 446448
values definitions, 441
Guyan reduction
closed form solution, 361-363
derivation, 358-360
described, 358, 387-388
MATLAB and ANSYS results summary
10-element beam frequency, 367-368
20-element beam mode shape plots,
368-373
MATLAB code, 366-367, 373-383
modred function and, 294

H

Hankel values, 542, 546, 548

L

Laplace transforms

definitions, 631-633

differential equation application, 637

differentiation and integration, 635

duality, 634-635

examples and table, 633-634

frequency response definition, 637

state space application, 637-639

transfer function definition, 636-637

zero initial conditions application, 635-636
Lumped mass matrix, cantilever beam, 354-355

M

Mass matrix, see also Stiffness matrices
described, 9
diagonalization of, 174-177
MATLAB code



648

Index

from ANSYS code, see State space model,
MATLAB from ANSYS
balanced reduction
dc gain ranking, 528-530
summary, 630
code summaries, 625-626
balanced reduction, 630
disk drive actuator, 629-630
dynamics, 628-629
frequency response analysis, 626-628
ground acceleration model, 629
MIMO two-stage actuator model, 630
state space analysis, 627-629
time domain, 628
transfer function analysis, 626
transient response, modal form, 628
zeros of transfer functions, 627
controllability and observability, 542-546
disk drive actuator model
dc gain, 501-506
description, 499-500
forcing function, 501-506
input, dof definition, 500-501
ranking results, 506-509
results plots code, 515-518
results plots discussion, 518-520
state space matrix building, 509-512
state space system definition, 513-515
summary, 629-630
frequency response, modal state space
calculation, 303-305
listing, 226-229
overview, 226
plotting code, 305-309
plotting forms, 311-314
results, critical damping, 309-311
setup, 301-303
summary, 628
frequency response, state space form
critical damping percentage, 126-128
initial condition responses, 128-129
initial condition responses plots,
130-132
frequency response analysis, transfer
function
bode calculation, 65-66
bode calculation with frequency, 67-70
description, 61-62
listing, 226229

output plots, bode calculation, 72-73
overview, 226
polynomial form, for-loop calculation,
62—-64
polynomial form, vector calculation,
6465
summary, 626627, 628
zpk function, bode calculation with
frequency, 70-72
Guyan reduction
vs. ANSYS results summary, 367-373
two-element cantilever beam, 366367,
373-383
MIMO two-stage actuator model
balanced reduction, 596-607
dc gain calculations, 580-587
forcing function, 580-587
frequency response pairs, 607-614
impulse response, 616622
input, dof definition, 578-580
mdc and del comparisons, 614616
resonant frequency vs. mode number
plots, 587-592
state space matrix building, 592-596
summary, 630
model size reduction function, see Modred
poles and zeros transfer function
damped output, pole/zero plots, 40-44
description, 32
listing, 32-37
root locus using for-loop, 44-47
undamped and damped, 4748
undamped output, 38-39
principal coordinate system
back-transforming to physical, 287-288
displacement calculations, 286-287
proportional damping, 283-284
time domain displacements, 247-253
root locus using for-loop, 4447
sdof system analysis, 21-22
state space analysis, complex eigenvalue
modes
components, 118~-119
developmental sequence, 115-118
eigenvectors magnitude and phase angle,
121-122
eigenvectors normalization, 119-121
real motion and, 122-124
state space form, modal analysis



Index

649

description, 262
eigenvalue calculation, 262-263
eigenvector calculation, 264-265
eigenvector normalization, 269-273
eigenvectors, real and imaginary values,
265-266
function files called, 327-328
model setup and listing, 322-324
oded5 code use, 325-326
plots, 326-327
problem initial conditions setup,
324-325
results plots, 328-332
sorting eigenvalues/eigenvectors,
266-269
summary, 626-627
state space form, real modes
Argand diagrams, 290-292
back-transforming to physical, 287-288
critical damping, 284-285
methodology, 279-280
principal displacement, 286287
proportional damped, initial conditions,
293-298
proportional damping, principal
coordinates, 283-284
results plots, 288-290
undamped model, 280-282
time domain, modal state space
function files called, 327-328
model setup and listing, 322-324
ode45 code use, 325-326
plots, 326-327
problem initial conditions setup,
324-325
results plots, 328-332
summary, 628
time domain displacements, state space
analysis, 142-143
description, 144, 155-156, 247
equations of motion review, 153-155
function, 159
listing, 144-148, 157-159, 251-253
results, 156-157, 248-251
Simulink model, 155-156, 160
summary, 628
transient response, modal form
description, 247
listing, 251-253

results, 248-251
summary, 628
MIMO two-stage actuator model
actuator description, 562-563
ANSYS code summaries, 630
ANSYS model description, 563-565
ANSYS piezo results
eigenvalues, frequency responses,
565-567
mode shape discussion, 574-575
mode shape plots, 567-574
output listing, 575-578
MATLAB code listing and results
balanced reduction, 596-607
dc gain calculations, 580-587
forcing function, 580-587
frequency response pairs, 607-614
impulse response, 616-622
input, dof definition, 578-580
mdc and del comparisons, 614616
resonant frequency vs. mode number
plots, 587-592
state space matrix building, 592-596
summary, 630
overview, 561-562
summary, 622-623
Modal analysis
back-transforming coordinates, 186
damped systems, normal modes
matrix definition, proportional damping,
194-199
necessary conditions, 190~192
overview, 189-190
types of damping, 192-194
eigenvalue problem
characteristic equation, 165—168
eigenvectors determination, 168-172
eigenvectors interpretation, 172
equations of motion, 164165
modal matrix, 172-173
principal mode definition, 165
eigenvector normalization
with respect to mass, 178-182
with respect to unity, 177-178
equations of motion
mass normalization review, 182-183
summary, 185-186
uncoupling, 173-177



650

Index

frequency response, see Frequency response
analysis
model size reduction, 186-189
overview, 1-4, 163-164
state space form, see State space form,
modal analysis
transformation of initial conditions/forces,
183-185
transient response, see Transient response,
modal form
Modal matrix, 83
Model size reduction
balanced reduction, see Balanced reduction
in cantilever model, 389-391
described, 389
Guyan reduction
closed form solution, 361-363
derivation, 358-360
described, 358, 387-388
MATLAB and ANSYS results summary,
367-373
MATLAB code, 366-367, 373-383
modred function and, 294
modal analysis, 186-189
modred calculations, see Modred
overview, 4-6
Mode shapes, see Eigenvectors
Modred (MODel order REDuction)
description, 417420
matched dc gain results, 523-525
mdc and del calculations
ground acceleration model, 461463
state space model, 423
MIMO two-stage actuator model, 596-607
mode sort definition, 420421
reduced model plotting commands
ground acceleration model, 464466
state space model, 424-426
sorted reduced results plots
ground acceleration model, 468-470
state space model, 429-430
summary, 430, 471-472
system definition for reduction, 421-423
unsorted reduced results plots
ground acceleration model, 466468
state space model, 427428
Multiple Input, Multiple Output (MIMO), see
MIMO two-stage actuator model

N

Normal mode, see Principal coordinate system
Nyquist, 79, 312

0

Observability, see Controllability and
observability

ODE45 method, 44-47, 155, 325-326

Orthogonality, 176

P

Partial fraction expansion, frequency response,
209-211
Peak gain, 397
Physical coordinate system
back-transforming and, 186, 206-209
equations of motion
modal analysis, 182-183, 185-186
state space form, 273-274
transient response, 243-247
uncoupling, 173-177
MATLAB code
back-transforming and, 287-288
time domain displacements, 247-253
Poles and zeros, see also Eigenvalues; Zeros;
Zpk (zeros/poles/gains)
code summary, 627
frequency response sketches, 57-58
poles described, 29, 87
relationship in transfer function, 88
tdof transfer function analysis, 29-30, 32
transfer function using MATLAB code
damped output, pole/zero plots, 40-44
description, 32
listing, 32-37
root locus using for-loop, 4447
undamped and damped, 4748
undamped output, 38-39
Principal coordinate system
back-transforming to physical, 186
equations of motion
modal analysis, 183, 185-186



Index

651

state space form, 274-277
transient response, 241-242
uncoupling, 173-177
frequency response, modal form, 204-206
MATLAB code
back-transforming to physical, 287-288
displacement calculations, 286-287
proportional damping, 283-284
time domain displacements, 247-253
modal analysis, 165
Proportional damping, 192
damping values solutions, 195-198
Rayleigh form, 198-199

R

Rayleigh form of damping matrix, 198-199
Reduction of model size
balanced reduction, see Balanced reduction
in cantilever model, 389-391
described, 389
Guyan reduction
closed form solution, 361-363
derivation, 358-360
described, 358, 387-388
MATLAB and ANSYS results summary,
367-373
MATLAB code, 366-367, 373-383
modred function and, 294
modred calculations, see Modred
overview, 4-6
Region of Convergence, 633-634
Relative damping, 193
Resonant frequencies, 29, 399-402; see also
Poles and zeros
Root locus using for-loop, MATLAB code,
44-47
Rotary actuator model, 12-15
Runge-Kutta method ODEAS5, 155

S

Sdof, see Single degree of freedom (sdof)
system

Simple proportional damping, 192-193

Simulink model, 155-156, 160

Single degree of freedom (sdof) system
definition and equation, 15
frequency response derivation, 17-21
MATLAB code, 21-22
transfer function derivation, 15-17
Single Input Single Output (SISO) system, 501
Six degree of freedom (6dof) model
global mass matrix, 353-354
stiffness matrix, 11-12
stiffness matrix, finite elements
global matrix building, 335-339
matrix development, 334--335
overview, 333-334
Spectral matrix, 182
State space analysis
Argand diagram
described, 124-126
initial condition responses plots,
132-136
complex eigenvalues/vectors, 113-115
equations of motion, 108-109
input matrix forms, 109-110
MATLAB code, complex eigenvalue modes
components, 118-119
developmental sequence, 115-118
eigenvectors magnitude and phase angle,
121-122
eigenvectors normalization, 119-121
real motion and, 122-124
MATLAB code, frequency response
critical damping percentage, 126-128
description, 61-62
initial condition responses, 128~129
initial condition responses plots,
130-132
output plots, bode calculation, 72-73
polynomial form, for-loop calculation,
62-64
polynomial form, vector calculation,
64-65
summary, 626-627
transfer function, bode calculation,
65-66
transfer function, bode calculation with
frequency, 67-70
zpk function, bode calculation with
frequency, 70-72
MATLAB code, time domain
description, 144, 155-156, 247



652

Index

equations of motion review, 153-155
function, 159
listing, 144-148, 157-159, 251-253
results, 156-157, 248-251
Simulink model, 155-156, 160
summary, 628
matrix formulation, 106-108
output matrix forms, 111-113
overview, 105-106
second order reduced equation, 363-366
state space definition, 105
time domain
back-transform, 149-150
inverse matrix Laplace transform, 149
matrix exponential, closed form, sdof,
150-152
matrix Laplace transform, initial
conditions, 148-149
response solution, 152-153
transfer function matrix, 142-143
transfer function solution, 139-142

State space form, modal analysis

eigenvalue problem, 256-257
eigenvectors, 259-262
Laplace transform, 257-259
eigenvectors solutions, 80-84
equations of motion
back-transforming to physical, 319-322
physical coordinates, 273-274
principal coordinates, 274-277
time domain, 317-319
graphic interpretation, 58-61
hand sketches, 57-58
individual mode contributions, 277-279
low/high frequency behavior, 52-57
MATLAB code
description, 262
eigenvalue calculation, 262-263
eigenvector calculation, 264-265
eigenvector normalization, 269-273
eigenvectors, real and imaginary values,
265-266
function files called, 327-328
model setup and listing, 322-324
ode45 code use, 325-326
plots, 326-327
problem initial conditions setup,
324-325
results plots, 328-332

sorting eigenvalues/eigenvectors,
266269
summary, 626627
MATLAB code, frequency response
calculation, 303-305
plotting code, 305-309
plotting forms, 311-314
results, critical damping, 309-311
setup, 301-303
summary, 627-628
MATLAB code, real modes
Argand diagrams, 290-292
back-transforming to physical, 287288
critical damping, 284-285
methodology, 279-280
principal displacement, 286287
proportional damped initial conditions,
293-298
proportional damping, principal
coordinates, 283-284
results plots, 288-290
undamped model, 280-282
MATLAB code, time domain
function files called, 327-328
model setup and listing, 322-324
ode45 code use, 325-326
plots, 326-327
problem initial conditions setup,
324-325
results plots, 328-332
summary, 628
modal matrix, 262
output plots, critical damping
code used, 73
db-linear, 76
db-log, 75
linear-linear, 77
log-log, 74
Nyquist, 79 .
real and imaginary vs. log-linear, 78-79
real vs. imaginary, 79
overview, 51, 255-256

State space model, MATLAB from ANSYS

ANSYS code
eigenvalue extraction methods, 389
listing, 431-434
modal matrix, 393-394
10-element model, 391-393
cantilever model, 389-391



Index

653

eigenvalue run
bode calculations, 409410
damping values considerations, 402
direct transmission matrix “d” setup,
407-408
frequency range, 409410
full model response plots, 410413
input, 395
input matrix “b” setup, 405406
modal matrix size, 396
mode sort by vibration, 396-402
modred, see Modred
output matrix “c” setup, 407408
ranking approach for mode contribution,
394
reduced models mode contribution plots,
416417
reduced models response plots, 413—415
“ss” setup, 409410
system definition for reduction, 421-423
system matrix “a” setup, 403-405
ground acceleration model, see Ground
acceleration model, MATLAB from
ANSYS
MATLAB code summary, 629
overview, 387-389
Static analysis, two-element cantilever beam
applied tip force solution, 345-346
constraint degrees of freedom elimination,
344-345
description, 339-340
element matrix development, 340-342
global matrix building, 342-344
static condensation, 346-352
Static condensation
beam solution, 349-352
derivation, 346-349
Stiffness matrices
diagonalization of, 174-177
overview, 8-9
rotary actuator model, 12-15
6dof model, 11-12
Stiffness matrix analysis using finite elements
6dof model
global matrix building, 335-339
matrix development, 334-335
overview, 333-334
static analysis, two-element cantilever beam
applied tip force solution, 345-346

constraint degrees of freedom
elimination, 344-345

description, 339-340

element matrix development, 340-342

global matrix building, 342-344

static condensation, 346-352

T

Tdof, see Three degree of freedom (tdof) system
Three degree of freedom (tdof) system
equations of motion derivation matrix
checks for linear systems, 11
components and form, 8-11
rotary actuator model, stiffness and
mass, 12-15
6dof model, stiffness, 11-12
system description, 8
frequency response, see Frequency response
analysis
state space formulation, see State space
analysis
transfer function analysis
characteristic equation solution, 23-27
equations, 58-59
Laplace transform, zero initial
conditions, 23
MATLAB plot description, 32
matrix format, poles and zeros, 32
poles, 29-30
undamped model matrix, 27-28
zeros, 30-31
Time domain, modal state space, MATLAB
code
function files called, 327-328
model setup and listing, 322-324
oded5 code use, 325-326
plots, 326-327
problem initial conditions setup, 324-325
results plots, 328-332
summary, 628
Time domain displacements
MATLAB code, state space analysis
description, 144, 155-156, 247
equations of motion review, 153-155
function, 159
listing, 144-148, 157-159, 251-253



654

Index

results, 156157, 248-251
Simulink model, 155-156, 160
summary, 628
MATLAB code, transient response
description, 247
listing, 251-253
results, 248-251
summary, 628
Transfer function
MATLAB code, frequency response
bode calculation, 65-66
bode calculation with frequency, 67-70
description, 61-62
listing, 226-229
output plots, bode calculation, 72-73
overview, 226
polynomial form, for-loop calculation,
62-64
polynomial form, vector calculation,
64-65
summary, 626-627
zpk function, bode calculation with
frequency, 70-72
Transfer function analysis
eigenvectors solutions, 80-84
equations of motion derivation matrix
checks for linear systems, 11
components and form, 8-11
rotary actuator model, stiffness and
mass, 12-15
6dof model, stiffness, 11-12
tdof system description, 8
frequency domain behavior, 53-57
frequency response, modal form
modal combinations for, 213-217
principal coordinates, 204-206
MATLAB code, poles and zeros
damped output, 40-44
description, 32
listing, 32-37
root locus using for-loop, 4447
summary, 626
undamped and damped, 47-48
undamped output plots, 38-39
sdof system
definition and equation, 15
frequency response derivation, 17-21
MATLAB code, 21-22
transfer function derivation, 15-17
tdof system

characteristic equation solution, 23-27
equations, 58-59
Laplace transform, zero initial
conditions, 23
MATLAB plot description, 32
matrix format, poles and zeros, 32
poles, 29-30
undamped model matrix, 27-28
zeros, 30-31
Transient response, modal form

equations of motion
back-transforming to physical, 243-247
principal coordinates, 241-242

initial conditions/forces transformation,

240-241

MATLAB code, time domain displacements
description, 247
listing, 251-253
results, 248-251
summary, 628

review, 239-240

Vv

Viscoelastic damping, 189-190

Z

Zeros
cantilever model, ANSYS
code summary, 627
results discussion, 102-103
tip supported, 99-102
unsupported, 95-99
ndof example
7dof frequency response models, 89-94
MATLAB code, 89
number of zeros determination, 87-89
overview, 30, 87
poles and, see Poles and zeros
tdof transfer function analysis, 30-32
Zpk (zeros/poles/gains)
bode calculation frequency response, 70-72
bode calculations, 70~72
frequency response computed from, 58-61
undamped and damped in transfer function,
4748



	COVER
	PREFACE
	Table of Contents
	CHAPTER 1: INTRODUCTION
	1.1 Representing Dynamic Mechanical Systems
	1.2 Modal Analysis
	1.3 Model Size Reduction

	CHAPTER 2: TRANSFER FUNCTION ANALYSIS
	2.1 Introduction
	2.2 Deriving Matrix Equations of Motion
	2.2.1 Three Degree of Freedom (tdof) System, Identifying Components and Degrees of Freedom
	2.2.2 Defining the Stiffness, Damping and Mass Matrices
	2.2.3 Checks on Equations of Motion for Linear Mechanical
	2.2.4 Six Degree of Freedom (6dof) Model - Stiffness Matrix
	2.2.5 Rotary Actuator Model - Stiffness and Mass Matrices

	2.3 Single Degree of Freedom (sdof) System Transfer Function and Frequency Response
	2.3.1 sdof System Definition, Equations of Motion
	2.3.2 Transfer Function
	2.3.3 Frequency Response
	2.3.4 MATLAB Code sd0fxfer.m Description
	2.3.5 MATLAB Code sd0fxfer.m Listing

	2.4 tdof Laplace Transform, Transfer Functions, Characteristic Equation, Poles, Zeros
	2.4.1 Laplace Transforms with Zero Initial Conditions
	2.4.2 Solving for Transfer Functions
	2.4.3 Transfer Function Matrix for Undamped Model
	2.4.4 Four Distinct Transfer Functions
	2.4.5 Poles
	2.4.6 Zeros
	2.4.7 Summarizing Poles and Zeros, Matrix Format

	2.5 MATLAB Code tdofpz3x3.m - Plot Poles and Zeros
	2.5.1 Code Description
	2.5.2 Code Listing
	2.5.3 Code Output - Polelzero Plots in Complex Plane
	2.5.3.1 Undamped Model - PoleiZero Plots
	2.5.3.2 Damped Model - Polelzero Plots
	2.5.3.3 Root Locus, tdofpz3x3~rlocus.m
	2.5.3.4 Undamped and Damped Model - tf and zpk Forms


	Problems

	CHAPTER 3: FREQUENCY RESPONSE ANALYSIS
	3.1 Introduction
	3.2 Low and High Frequency Asymptotic Behavior
	3.3 Hand Sketching Frequency Responses
	3.4 Interpreting Frequency Response Graphically in Complex Plane
	3.5 MATLAB Code td0fxfer.m - Plot Frequency Responses
	3.5.1 Code Description
	3.5.2 Polynomial Form, For-Loop Calculation, Code Listing
	3.5.3 Polynomial Form, Vector Calculation, Code Listing
	3.5.4 Transfer Function Form - Bode Calculation, Code Listing
	3.5.5 Transfer Function Form, Bode Calculation with Frequency, Code Listing
	3.5.6 ZeroIPolelGain Function Form, Bode Calculation with Frequency, Code Listing
	3.5.7 Code Output - Frequency Response Magnitude and Phase Plots

	3.6 Other Forms of Frequency Response Plots
	3.6.1 Log Magnitude versus Log Frequency
	3.6.2 db Magnitude versus Log Frequency
	3.6.3 db Magnitude versus Linear Frequency
	3.6.4 Linear Magnitude versus Linear Frequency
	3.6.5 Real and Imaginary Magnitudes versus Log and Linear Frequency
	3.6.6 Real versus Imaginary (Nyquist)

	3.7 Solving for Eigenvectors (Mode Shapes) Using the Transfer Function Matrix
	Problems

	CHAPTER 4: ZEROS IN SISO MECHANICAL SYSTEMS
	4.1 Introduction
	4.2 "n" dof Example
	4.2.1 MATLAB Code ndof-numzeros.m, Usage Instructions
	4.2.2 Seven dof Model - z7F1 Frequency Response
	4.2.3 Seven dof Model - z3F4 Frequency Response
	4.2.4 Seven dof Model - z31F3, Driving Point Frequency Response

	4.3 Cantilever Model - ANSYS
	4.3.1 Introduction
	4.3.2 ANSYS Code cantfem.inp Description and Listing
	4.3.3 ANSYS Code cantzero.inp Description and Listing
	4.3.4 ANSYS Results, cantzer0.m 

	Problem

	CHAPTER 5: STATE SPACE ANALYSIS
	5.1 Introduction
	5.2 State Space Formulation
	5.3 Definition of State Space Equations of Motion
	5.4 Input Matrix Forms
	5.5 Output Matrix Forms
	5.6 Complex Eigenvalues and Eigenvectors - State Space Form
	5.7 MATLAB Code tdof-nongrop-damped.m: Methodology, Model Setup, Eigenvalue Calculation Listing
	5.8 Eigenvectors -Normalized to Unity
	5.9 Eigenvectors - Magnitude and Phase Angle Representation
	5.10 Complex Eigenvectors Combining to Give Real Motions
	5.11 Argand Diagram Introduction
	5.12 Calculating I, Plotting Eigenvalues in Complex Plane, Frequency Response
	5.13 Initial Condition Responses of Individual Modes
	5.14 Plotting Initial Condition Response, Listing
	5.15 Plotted Results: Argand and Initial Condition Responses
	5.15.1 Argand Diagram, Mode 2
	5.15.2 Time Domain Responses, Mode 2
	5.15.3 Argand Diagram, Mode 3
	5.15.4 Time Domain Responses, Mode 3
	Problems


	CHAPTER 6: STATE SPACE: FREQUENCY RESPONSE, TIME DOMAIN
	6.1 Introduction - Frequency Response
	6.2 Solving for Transfer Functions in State Space Form Using Laplace Transforms
	6.3 Transfer Function Matrix
	6.4 MATLAB Code td0fss.m - Frequency Response Using State Space
	6.4.1 Code Description, Plot
	6.4.2 Code Listing

	6.5 Introduction - Time Domain
	6.6 Matrix Laplace Transform - with Initial Conditions
	6.7 Inverse Matrix Laplace Transform, Matrix Exponential
	6.8 Back-Transforming to Time Domain
	6.9 Single Degree of Freedom System - Calculating Matrix Exponential in Closed Form
	6.9.1 Equations of Motion, Laplace Transform
	6.9.2 Defining the Matrix Exponential - Taking Inverse Laplace Transform
	6.9.3 Defining the Matrix Exponential - Using Series Expansion
	6.9.4 Solving for Time Domain Response

	6.10 MATLAB Code tdof-ss-time-ode45-s1nk.m - Time Domain Response of tdof Model
	6.10.1 Equation of Motion Review
	6.10.2 Code Description
	6.10.3 Code Results - Time Domain Responses
	6.10.4 Code Listing
	6.10.5 MATLAB Function td0fssfun.m - Called by tdof~ss~time~ode45~slnk.m
	6.10.6 Simulink Model tdofss~simulink.mdl

	Problems

	CHAPTER 7: MODAL ANALYSIS
	7.1 Introduction
	7.2 Eigenvalue Problem
	7.2.1 Equations of Motion
	7.2.2 Principal (Normal) Mode Definition
	7.2.3 Eigenvalues I Characteristic Equation
	7.2.4 Eigenvectors
	7.2.5 Interpreting Eigenvectors
	7.2.6 Modal Matrix

	7.3 Uncoupling the Equations of Motion
	7.4 Normalizing Eigenvectors
	7.4.1 Normalizing with Respect to Unity
	7.4.2 Normalizing with Respect to Mass

	7.5 Reviewing Equations of Motion in Principal Coordinates - Mass Normalization
	7.5.1 Equations of Motion in Physical Coordinate System
	7.5.2 Equations of Motion in Principal Coordinate System
	7.5.3 Expanding Matrix Equations of Motion in Both Coordinate Systems

	7.6 Transforming Initial Conditions and Forces
	7.7 Summarizing Equations of Motion in Both Coordinate Systems
	7.8 Back-Transforming from Principal to Physical Coordinates
	7.9 Reducing the Model Size When Only Selected Degrees of Freedom are Required
	7.10 Damping in Systems with Principal Modes
	7.10.1 Overview
	7.10.2 Conditions Necessary for Existence of Principal Modes in Damped System
	7.10.3 Different Types of Damping
	7.10.3.1 Simple Proportional Damping
	7.10.3.2 Proportional to Stiffness Matrix - "Relative" Damping
	7.10.3.3 Proportional to Mass Matrix - "Absolute" Damping

	7.10.4 Defining Damping Matrix When Proportional Damping is Assumed
	7.10.4.1 Solving for Damping Values
	7.10.4.2 Checking Rayleigh Form of Damping Matrix


	Problems

	CHAPTER 8: FREQUENCY RESPONSE: MODAL FORM
	8.1 Introduction
	8.2 Review from Previous Results
	8.3 Transfer Functions - Laplace Transforms in Principal Coordinates
	8.4 Back-Transforming Mode Contributions to Transfer Functions in Physical Coordinates
	8.5 Partial Fraction Expansion and the Modal Form
	8.6 Forcing Function Combinations to Excite Single Mode
	8.7 How Modes Combine to Create Transfer Functions
	8.8 Plotting Individual Mode Contributions
	8.9 MATLAB Code tdof-modal-xfer.m - Plotting Frequency Responses, Modal Contributions
	8.9.1 Code Overview
	8.9.2 Code Listing, Partial

	8.10 tdof Eigenvalue Problem Using ANSYS
	8.10.1 ANSYS Code threedofinp Description
	8.10.2 ANSYS Code Listing
	8.10.3 ANSYS Results

	Problems

	CHAPTER 9 TRANSIENT RESPONSE: MODAL FORM
	9.1 Introduction
	9.2 Review of Previous Results
	9.3 Transforming Initial Conditions and Forces
	9.3.1 Transforming Initial Conditions
	9.3.2 Transforming Forces

	9.4 Complete Equations of Motion in Principal Coordinates
	9.5 Solving Equations of Motion Using Laplace Transform
	9.6 MATLAB Code tdof-modal-time.m - Time Domain Displacements in PhysicalIPrincipal Coordinates
	9.6.1 Code Description
	9.6.2 Code Results
	9.6.3 Code Listing

	Problems

	CHAPTER 10: MODAL ANALYSIS: STATE SPACE FORM
	10.1 Introduction
	10.2 Eigenvalue Problem
	10.3 Eigenvalue Problem - Laplace Transform
	10.4 Eigenvalue Problem - Eigenvectors
	10.5 Modal Matrix
	10.6 MATLAB Code tdofss-eig.m: Solving for Eigenvalues and Eigenvectors
	10.6.1 Code Description
	10.6.2 Eigenvalue Calculation
	10.6.3 Eigenvector Calculation
	10.6.4 MATLAB Eigenvectors - Real and Imaginary Values
	10.6.5 Sorting Eigenvalues I Eigenvectors
	10.6.6 Normalizing Eigenvectors
	10.6.7 Writing Homogeneous Equations of Motion
	10.6.7.1 Equations of Motion - Physical Coordinates
	10.6.7.2 Equations of Motion - Principal Coordinates

	10.6.8 Individual Mode Contributions, Modal State Space Form

	10.7 Real Modes - Argand Diagrams, Initial Condition Responses of Individual Modes
	10.7.1 Undamped Model, Eigenvectors, Real Modes
	10.7.2 Principal Coordinate Eigenvalue Problem
	10.7.3 Damping Calculation, Eigenvalue Complex Plane Plot
	10.7.4 Principal Displacement Calculations
	10.7.5 Transformation to Physical Coordinates 
	10.7.6 Plotting Results
	10.7.7 Undamped/Proportionally Damped Argand Diagram, Mode 2
	10.7.8 Undamped/Proportionally Damped Argand Diagram, Mode 3
	10.7.9 Proportionally Damped Initial Condition Response, Mode 2
	10.7.10 Proportionally Damped Initial Condition Response, Mode 3

	Problems

	CHAPTER 11: FREQUENCY RESPONSE: MODAL STATE SPACE FORM
	11.1 Introduction
	11.2 Modal State Space Setup, tdofss~modal~xfer~modes.m Listing
	11.3 Frequency Response Calculation
	11.4 Frequency Response Plotting
	11.5 Code Results - Frequency Response Plots, 2% of Critical Damping
	11.6 Forms of Frequency Response Plotting 
	Problem

	CHAPTER 12: TIME DOMAIN: MODAL STATE SPACE FORM
	12.1 Introduction
	12.2 Equations of Motion - Modal Form
	12.3 Solving Equations of Motion Using Laplace Transforms
	12.4 MATLAB Code tdofss-modal-time-ode45.m - Time Domain Modal Contributions
	12.4.1 Modal State Space Model Setup, Code Listing
	12.4.2 Problem Setup, Initial Conditions, Code Listing
	12.4.3 Solving Equations Using ode45, Code Listing
	12.4.4 Plotting, Code Listing
	12.4.5 Functions Called: tdofssmodalfun.m, tdofssmodallfun.m, tdofssmodal2fun.m, tdofssmodal3fun.m

	12.5 Plotted Results
	Problem

	CHAPTER 13: FINITE ELEMENTS: STIFFNESS MATRICES
	13.1 Introduction
	13.2 Six dof Model - Element and Global Stiffness Matrices
	13.2.1 Overview
	13.2.2 Element Stiffness Matrix
	13.2.3 Building Global Stiffness Matrix Using Element Stiffness Matrices

	13.3 Two-Element Cantilever Beam
	13.3.1 Element Stiffness Matrix
	13.3.2 Degree of Freedom Definition - Beam Stiffness Matrix
	13.3.3 Building Global Stiffness Matrix Using Element Stiffness Matrices
	13.3.4 Eliminating Constraint Degrees of Freedom from Stiffness Matrix
	13.3.5 Static Solution: Force Applied at Tip

	13.4 Static Condensation
	13.4.1 Derivation
	13.4.2 Solving Two-Element Cantilever Beam Static Problem

	Problems

	CHAPTER 14: FINITE ELEMENTS: DYNAMICS
	14.1 Introduction
	14.2 Six dof Global Mass Matrix
	14.3 Cantilever Dynamics
	14.3.1 Overview - Mass Matrix Forms
	14.3.2 Lumped Mass
	14.3.3 Consistent Mass

	14.4 Dynamics of Two-Element Cantilever - Consistent Mass Matrix
	14.5 Guyan Reduction
	14.5.1 Guyan Reduction Derivation
	14.5.2 Two-Element Cantilever Eigenvalues Closed Form Solution Using Guyan Reduction

	14.6 Eigenvalues of Reduced Equations for Two-Element Cantilever, State Space Form
	14.7 MATLAB Code cant-2el-guyan.m - Two-Element Cantilever  EigenvaluesIEigenvectors
	14.7.1 Code Description
	14.7.2 Code Results

	14.8 MATLAB Code cantbeam-guyan.m - User-Defined Cantilever EigenvalueslEigenvectors
	14.9 ANSYS Code cantbeaminp, Code Description
	14.10 MATLAB cantbeam-guyan.m 1 ANSYS cantbeam.inp Results Summary
	14.10.1 10-Element Beam Frequency Comparison
	14.10.2 20-Element Beam Mode Shape Plots, Modes I to 5

	14.11 MATLAB Code cantbeam-guyan.m Listing
	14.12 ANSYS Code cantbeam.inp Listing
	Problems

	CHAPTER 15: SISO STATE SPACE MATLAB MODEL FROM ANSYS MODEL
	15.1 Introduction
	15.2 ANSYS Eigenvalue Extraction Methods
	15.3 Cantilever Model, ANSYS Code cantbeam-ss.inp, MATLAB Code cantbeam-ss-freq.m
	15.4 ANSYS 10-Element Model Eigenvalue/Eigenvector Summary
	15.5 Modal Matrix
	15.6 MATLAB State Space Model from ANSYS Eigenvalue Run - cantbeam-ss-m0dred.m
	15.6.1 Input
	15.6.2 Defining Degrees of Freedom and Number of Modes
	15.6.3 Sorting Modes by dc Gain and Peak Gain, Selecting Modes Used
	15.6.4 Damping, Defining Reduced Frequencies and Modal Matrices
	15.6.5 Setting up System Matrix "a"
	15.6.6 Setting up Input Matrix "b"
	15.6.7 Setting up Output Matrix "c" and Direct Transmission Matrix "d"
	15.6.8 Frequency Range, "ss" Setup, Bode Calculations
	15.6.9 Full Model - Plotting Frequency Response, Step Response
	15.6.10 Reduced Models - Plotting Frequency Response, Step Response
	15.6.11 Reduced Models - Plotted Results - Four Modes Used
	15.6.12 Modred Description
	15.6.13 Defining Sorted or Unsorted Modes to be Used
	15.6.14 Defining System for Reduction
	15.6.15 Modred Calculations - "mdc" and "del"
	15.6.16 Reduced Modred Models - Plotting Commands
	15.6.17 Plotting Unsorted Modred Reduced Results - Eliminating High Frequency Modes
	15.6.18 Plotting Sorted Modred Reduced Results - Eliminating Lower dc Gain Modes
	15.6.19 Modred Summary

	15.7 ANSYS Code cantbeam-ss.inp Listing

	CHAPTER 16: GROUND ACCELERATION MATLAB MODEL FROM ANSYS MODEL
	16.1 Introduction
	16.2 Model Description
	16.3 Initial ANSYS Model Comparison - Constrained-Tip and Spring-Tip FrequenciesIMode Shapes
	16.4 MATLAB State Space Model from ANSYS Eigenvalue Run - cantbeam-ss-shkr-m0dred.m
	16.4.1 Input
	16.4.2 Shaker, Spring, Gram Force Definitions
	16.4.3 Defining Degrees of Freedom and Number of Modes
	16.4.4 Frequency Range, Sorting Modes by dc Gain and Plotting, Selecting Modes Used
	16.4.5 Damping, Defining Reduced Frequencies and Modal Matrices
	16.4.6 Setting Up System Matrix "a"
	16.4.7 Setting Up Matrices "b," "c" and "d"
	16.4.8 "ss" Setup, Bode Calculations
	16.4.9 Full Model - Plotting Frequency Response, Shock Response
	16.4.10 Reduced Models - Plotting Frequency Response, Shock Response
	16.4.11 Reduced Models - Plotted Results, Four Modes Used
	16.4.12 Modred - Setting up, "mdc" and "del" Reduction, Bode Calculation
	16.4.13 Reduced Modred Models - Plotting Commands
	16.4.14 Plotting Unsorted Modred Reduced Results - Eliminating High Frequency Modes
	16.4.15 Plotting Sorted Modred Reduced Results - Eliminating Lower dc Gain Modes
	16.4.16 Model Reduction Summary

	16.5 ANSYS Code cantbeam-ss-spring-shkr.inp Listing

	CHAPTER 17: SISO DISK DRIVE ACTUATOR MODEL
	17.1 Introduction
	17.2 Actuator Description
	17.3 ANSY S Suspension Model Description
	17.4 ANSYS Suspension Model Results
	17.4.1 Frequency Response
	17.4.2 Mode Shape Plots

	17.5 ANSYS Actuator/Suspension Model Description
	17.6 ANSYS Actuator/Suspension Model Results
	17.6.1 Eigenvalues, Frequency Responses
	17.6.2 Mode Shape Plots
	17.6.3 Mode Shape Discussion
	17.6.4 ANSYS Output Example Listing

	17.7 MATLAB Model, MATLAB Code act8.m Listing and Results
	17.7.1 Code Description
	17.7.2 Input, dof Definition
	17.7.3 Forcing Function Definition, dc Gain Calculation
	17.7.4 Ranking Results
	17.7.5 Building State Space Matrices
	17.7.6 Define State Space Systems, Original and Reduced
	17.7.7 Plotting of Results

	17.8 Uniform and Non-Uniform Damping Comparison
	17.9 Sample Rate and Aliasing Effects
	17.10 Reduced Truncation and Matched dc Gain Results 

	CHAPTER 18: BALANCED REDUCTION
	18.1 Introduction
	18.2 Reviewing dc Gain Ranking, MATLAB Code ba1red.m
	18.3 Controllability, Observability
	18.4 Controllability, Observability Gramians
	18.5 Ranking Using Controllability/Observability
	18.6 Balanced Reduction
	18.7 Balanced and dc Gain Ranking Frequency Response Comparison
	18.8 Balanced and dc Gain Ranking Impulse Response Comparison

	CHAPTER 19: MIMO TWO-STAGE ACTUATOR MODEL
	19.1 Introduction
	19.2 Actuator Description
	19.3 ANSYS Model Description
	19.4 ANSYS Piezo Actuator/Suspension Model Results
	19.4.1 Eigenvalues, Frequency Response
	19.4.2 Mode Shape Plots
	19.4.3 Mode Shape Discussion
	19.4.4 ANSYS Output Listing

	19.5 MATLAB Model, MATLAB Code act8pz.m Listing and Results
	19.5.1 Input, dof Definition
	19.5.2 Forcing Function Definition, dc Gain Calculations
	19.5.3 Building State Space Matrices
	19.5.4 Balancing, Reduction
	19.5.5 Frequency Responses for Different Numbers of Retained States
	19.5.6 "del" and "mdc" Frequency Response Comparison
	19.5.7 Impulse Response

	19.6 MIMO Summary
	Problems

	APPENDIX 1: MATLAB and ANSYS Programs
	APPENDIX 2: Laplace Transforms
	A2.1 Definitions
	A2.2 Examples, Laplace Transform Table
	A2.3 Duality
	A2.4 Differentiation and Integration
	A2.5 Applying Laplace Transforms to LODE'S with Zero Initial Conditions
	A2.6 Transfer Function Definition
	A2.7 Frequency Response Definition
	A2.8 Applying Laplace Transforms to LODE'S with Initial Conditions
	A2.9 Applying Laplace Transform to State Space

	References
	Index



